We show that the degree of smooth regular surfaces in P4 lying on a hypersurface of degree s containing a plane with multiplicity s-2 in its singular locus is bounded by a function of s. Then we show that a smooth regular surface lying on a quartic hypersurface with singular locus of dimension two has degree < 41.

On smooth surfaces in $\bold P\sp 4$ containing a plane curve

ELLIA, Filippo Alfredo;
2007

Abstract

We show that the degree of smooth regular surfaces in P4 lying on a hypersurface of degree s containing a plane with multiplicity s-2 in its singular locus is bounded by a function of s. Then we show that a smooth regular surface lying on a quartic hypersurface with singular locus of dimension two has degree < 41.
2007
Ellia, Filippo Alfredo; Folegatti, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/525056
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact