Waring problem for homogeneus forms asks for additive decomposition of a form $f$ into powers of linear forms. A classical problem is to determine when such a decomposition is unique. In this note I refine the work in arXiv:math/0406288v1 and answer this question under a divisibility assumption. To do this I translate the algebraic statement into a geometric one concerning the base loci of linear systems of $P^n$ with assigned singularities.

Base loci of linear systems and the Waring problem

MELLA, Massimiliano
2009

Abstract

Waring problem for homogeneus forms asks for additive decomposition of a form $f$ into powers of linear forms. A classical problem is to determine when such a decomposition is unique. In this note I refine the work in arXiv:math/0406288v1 and answer this question under a divisibility assumption. To do this I translate the algebraic statement into a geometric one concerning the base loci of linear systems of $P^n$ with assigned singularities.
2009
Mella, Massimiliano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/520629
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact