Urotensin-II is purported to influence pulmonary function by modulating smooth muscle tone/growth. In the present study, Northern blot and reverse transcription polymerase chain reaction (RT-PCR) analysis indicated the presence of UT receptor mRNA in cat trachea, bronchi and lung parenchyma. Urotensin-II contracted cat isolated trachea and bronchi with similar potencies (pEC(50)s 8.61+/-0.07-8.81+/-0.10). Contractile efficacies ranged from 19+/-9% to 63+/-11% KCl in the primary and secondary bronchi. The peptidic UT receptor antagonists BIM-23127, SB-710411 and GSK248451 (7.18+/-0.12, 7.52+/-0.08 and 9.05+/-0.16 cat recombinant UT pK(i)s) inhibited urotensin-II-induced contraction of cat isolated trachea with pK(b)s 6.36+/-0.11, 6.74+/-0.07 and 9.27+/-0.12, respectively. As such, feline lung contains significant amounts of UT mRNA and this receptor appears to be functionally coupled to bronchoconstriction (the peptidic tool compound GSK248451 representing a sub-nanomolar inhibitor of such effects). These findings suggest that the cat represents a suitable species for future studies designed to assess the effects of the urotensin-II receptor on pulmonary (patho)physiology.
Inhibitory effects of putative peptidic urotensin-II receptor antagonists on urotensin-II-induced contraction of cat isolated respiratory smooth muscle
CAMARDA, Valeria;
2005
Abstract
Urotensin-II is purported to influence pulmonary function by modulating smooth muscle tone/growth. In the present study, Northern blot and reverse transcription polymerase chain reaction (RT-PCR) analysis indicated the presence of UT receptor mRNA in cat trachea, bronchi and lung parenchyma. Urotensin-II contracted cat isolated trachea and bronchi with similar potencies (pEC(50)s 8.61+/-0.07-8.81+/-0.10). Contractile efficacies ranged from 19+/-9% to 63+/-11% KCl in the primary and secondary bronchi. The peptidic UT receptor antagonists BIM-23127, SB-710411 and GSK248451 (7.18+/-0.12, 7.52+/-0.08 and 9.05+/-0.16 cat recombinant UT pK(i)s) inhibited urotensin-II-induced contraction of cat isolated trachea with pK(b)s 6.36+/-0.11, 6.74+/-0.07 and 9.27+/-0.12, respectively. As such, feline lung contains significant amounts of UT mRNA and this receptor appears to be functionally coupled to bronchoconstriction (the peptidic tool compound GSK248451 representing a sub-nanomolar inhibitor of such effects). These findings suggest that the cat represents a suitable species for future studies designed to assess the effects of the urotensin-II receptor on pulmonary (patho)physiology.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.