Haifa-A is the first of two case studies relating to the POWADIMA research project. It comprises about 20% of the city’s water-distribution network and serves a population of some 60,000 from two sources. The hydraulic simulation model of the network has 126 pipes, 112 nodes, 9 storage tanks, 1 operating valve and 17 pumps in 5 discrete pumping stations. The complex energy tariff structure changes with hours of the day and days of the year. For a dynamically rolling operational horizon of 24 h ahead, the real-time, near-optimal control strategy is calculated by a software package that combines a genetic algorithm (GA) optimizer with an artificial neural network (ANN) predictor, the latter having replaced a conventional hydraulic simulation model to achieve the computational efficiency required for real-time use. This paper describes the Haifa-A hydraulic network, the ANN predictor, the GA optimizer and the demand- forecasting model that were used. Thereafter, it presents and analyses the results obtained for a full (simulated) year of operation in which an energy cost saving of some 25% was achieved in comparison to the corresponding cost of current practice. Conclusions are drawn regarding the achievement of aims and future prospects.

Optimizing the Operation of the Haifa-A Water System

ALVISI, Stefano
2007

Abstract

Haifa-A is the first of two case studies relating to the POWADIMA research project. It comprises about 20% of the city’s water-distribution network and serves a population of some 60,000 from two sources. The hydraulic simulation model of the network has 126 pipes, 112 nodes, 9 storage tanks, 1 operating valve and 17 pumps in 5 discrete pumping stations. The complex energy tariff structure changes with hours of the day and days of the year. For a dynamically rolling operational horizon of 24 h ahead, the real-time, near-optimal control strategy is calculated by a software package that combines a genetic algorithm (GA) optimizer with an artificial neural network (ANN) predictor, the latter having replaced a conventional hydraulic simulation model to achieve the computational efficiency required for real-time use. This paper describes the Haifa-A hydraulic network, the ANN predictor, the GA optimizer and the demand- forecasting model that were used. Thereafter, it presents and analyses the results obtained for a full (simulated) year of operation in which an energy cost saving of some 25% was achieved in comparison to the corresponding cost of current practice. Conclusions are drawn regarding the achievement of aims and future prospects.
2007
E., Salomons; A., Goryashko; U., Shamir; Z., Rao; Alvisi, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/519401
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 56
social impact