In this note we establish some results of local existence and uniqueness of solutions of the equations u(x, t) = u0(x) + ∫0t u(∫0τ u(x, s)ds, τ) dτ, t ≥ 0, x ∈ ℝ u(x, t) = u0(x) + ∫0t u (1/τ ∫0τ u(x, s)ds, τ) dτ, t ≥ 0, x ∈ ℝ and u(x, t) = u0(x) + ∫0t u(∫ 0τ 1/2δ(s) ∫x-δ(s)x+δ(s) u(ε, s)dεds, τ) dτ, t ≥ 0, x ∈ ℝ, or, equivalently, for the initial value problem, respectively: ∂/∂t u(x, t) = u(∫0t u(x, s)ds, t), t ≥ 0, x ∈ ℝ u(x, 0) = u0(x), x ∈ ℝ {∂/∂t u(x, t) = u(1/t ∫0t u(x, s)ds, t), t ≥ 0, x ∈ ℝ u(x, 0) = u0(x), x ∈ ℝ and {∂/∂t u(x, t) = u(∫0t 1/2δ(s) ∫x-δ(s)x+δ(s) u(ξ, τ)dξdτ, t), t ≥ 0, x ∈ ℝ u(x, 0) = u0(x), x ∈ ℝ when u0 e δ are given function satisfying conditions. © Birkhäuser Verlag, Basel, 2006.

On a type of evolution of self-referred and hereditary phenomena

MIRANDA, Michele;
2006

Abstract

In this note we establish some results of local existence and uniqueness of solutions of the equations u(x, t) = u0(x) + ∫0t u(∫0τ u(x, s)ds, τ) dτ, t ≥ 0, x ∈ ℝ u(x, t) = u0(x) + ∫0t u (1/τ ∫0τ u(x, s)ds, τ) dτ, t ≥ 0, x ∈ ℝ and u(x, t) = u0(x) + ∫0t u(∫ 0τ 1/2δ(s) ∫x-δ(s)x+δ(s) u(ε, s)dεds, τ) dτ, t ≥ 0, x ∈ ℝ, or, equivalently, for the initial value problem, respectively: ∂/∂t u(x, t) = u(∫0t u(x, s)ds, t), t ≥ 0, x ∈ ℝ u(x, 0) = u0(x), x ∈ ℝ {∂/∂t u(x, t) = u(1/t ∫0t u(x, s)ds, t), t ≥ 0, x ∈ ℝ u(x, 0) = u0(x), x ∈ ℝ and {∂/∂t u(x, t) = u(∫0t 1/2δ(s) ∫x-δ(s)x+δ(s) u(ξ, τ)dξdτ, t), t ≥ 0, x ∈ ℝ u(x, 0) = u0(x), x ∈ ℝ when u0 e δ are given function satisfying conditions. © Birkhäuser Verlag, Basel, 2006.
2006
Miranda, Michele; E., Pascali
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/519078
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact