Let $X\subset\P^N$ be a smooth variety. The embedding in $\P^n$ gives naturally rise to the notion of embedded tangent spaces. That is the locus spanned by tangent lines to a point $x\in X$. Generally the embedded tangent space intersects the variety $X$ only at the point $x$. In this paper I am interested in those $X$ for which this intersection, for $x\in X$ general, is a positive dimensional subvariety. The results of this paper support the conjecture that these varieties are built out of some special varieties that I call {\sl Tangentially Connected}, see Definition \ref{def:TC}. Actually I prove this under mild restrictions.

Tangential Connection

MELLA, Massimiliano
2009

Abstract

Let $X\subset\P^N$ be a smooth variety. The embedding in $\P^n$ gives naturally rise to the notion of embedded tangent spaces. That is the locus spanned by tangent lines to a point $x\in X$. Generally the embedded tangent space intersects the variety $X$ only at the point $x$. In this paper I am interested in those $X$ for which this intersection, for $x\in X$ general, is a positive dimensional subvariety. The results of this paper support the conjecture that these varieties are built out of some special varieties that I call {\sl Tangentially Connected}, see Definition \ref{def:TC}. Actually I prove this under mild restrictions.
2009
Mella, Massimiliano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/518072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact