Plants differ in their ability to tolerate salt stress. In aquatic ecosystems, it is important to know the responses of microalgae to increased salinity levels, especially considering that global warming will increase salinity levels in some regions of the Earth, e.g., Ethiopia. A green microalga, Kirchneriella sp. (Selenastraceae, Chlorophyta), isolated from freshwater Lake Awasa in the Rift Valley, Ethiopia, was cultured in media amended with 0, 0.4, 1.9, 5.9, and 19.4 g NaCl∙L−1 to five salinity levels. Growth was monitored for 3 mo, then samples were collected for photosynthetic pigment determinations, microspectrofluorimetric analyses, and micro- and submicroscopic examinations. The best growth was found at 1.9 g NaCl∙L−1. In the chloroplast, excess NaCl affected the coupling of light harvesting complex II and photosystem II (LHCII-PSII), but changes in thylakoid architecture and in the PSII assembly state allowed sufficient integrity of the photosynthetic membrane. The mucilaginous capsule around the cell probably provided partial protection against NaCl excess. On the whole, the microalga is able to acclimate to a range of NaCl concentrations, and this plasticity indicates that Kirchneriella sp. may survive future changes in water quality.

High salinity alters chloroplast morpho-physiology in a freshwater Kirchneriella species (Selenastraceae) from Ethiopian Lake Awasa

FERRONI, Lorenzo
Primo
;
BALDISSEROTTO, Costanza
Secondo
;
PANTALEONI, Laura;BILLI, Paolo;FASULO, Maria Palmira
Penultimo
;
PANCALDI, Simonetta
Ultimo
2007

Abstract

Plants differ in their ability to tolerate salt stress. In aquatic ecosystems, it is important to know the responses of microalgae to increased salinity levels, especially considering that global warming will increase salinity levels in some regions of the Earth, e.g., Ethiopia. A green microalga, Kirchneriella sp. (Selenastraceae, Chlorophyta), isolated from freshwater Lake Awasa in the Rift Valley, Ethiopia, was cultured in media amended with 0, 0.4, 1.9, 5.9, and 19.4 g NaCl∙L−1 to five salinity levels. Growth was monitored for 3 mo, then samples were collected for photosynthetic pigment determinations, microspectrofluorimetric analyses, and micro- and submicroscopic examinations. The best growth was found at 1.9 g NaCl∙L−1. In the chloroplast, excess NaCl affected the coupling of light harvesting complex II and photosystem II (LHCII-PSII), but changes in thylakoid architecture and in the PSII assembly state allowed sufficient integrity of the photosynthetic membrane. The mucilaginous capsule around the cell probably provided partial protection against NaCl excess. On the whole, the microalga is able to acclimate to a range of NaCl concentrations, and this plasticity indicates that Kirchneriella sp. may survive future changes in water quality.
2007
Ferroni, Lorenzo; Baldisserotto, Costanza; Pantaleoni, Laura; Billi, Paolo; Fasulo, Maria Palmira; Pancaldi, Simonetta
File in questo prodotto:
File Dimensione Formato  
Ferroni et al 2007 Am J Bot.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.96 MB
Formato Adobe PDF
4.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/517702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact