Bent crystals can be successfully applied for extraction/collimation of relativistic particles. A crucial feature to obtain high extraction efficiencies is the treatment of the surfaces being encountered by the beam, since mechanical operations induce considerable lattice imperfections. In order to remove the superficial damaged layer a planar etching can be applied on the surface exposed to the beam. This work presents a systematic study of the morphology and the crystalline perfection of the surface of the samples that have been used in accelerators with high efficiency. Crystals with different surface treatments have been investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied on the characterisation of surface morphology. Low energy backscattering channeling of 2-MeV α particles or protons was used as a probe for the crystalline structure. The presence of a superficial damaged layer in the samples just after mechanical treatment was unveiled, while, in contrast, chemical etching leaves a surface with high crystalline perfection that can be related to the record efficiency.

Structure and morphology of surface of silicon crystals to be applied for channeling at relativistic energies

GUIDI, Vincenzo;MILAN, Emiliano;BARICORDI, Stefano;MARTINELLI, Giuliano;
2006

Abstract

Bent crystals can be successfully applied for extraction/collimation of relativistic particles. A crucial feature to obtain high extraction efficiencies is the treatment of the surfaces being encountered by the beam, since mechanical operations induce considerable lattice imperfections. In order to remove the superficial damaged layer a planar etching can be applied on the surface exposed to the beam. This work presents a systematic study of the morphology and the crystalline perfection of the surface of the samples that have been used in accelerators with high efficiency. Crystals with different surface treatments have been investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied on the characterisation of surface morphology. Low energy backscattering channeling of 2-MeV α particles or protons was used as a probe for the crystalline structure. The presence of a superficial damaged layer in the samples just after mechanical treatment was unveiled, while, in contrast, chemical etching leaves a surface with high crystalline perfection that can be related to the record efficiency.
2006
A., Vomiero; S., Restello; C., Scian; E., BOSCOLO MARCHI; G., DELLA MEA; Guidi, Vincenzo; Milan, Emiliano; Baricordi, Stefano; Martinelli, Giuliano; A...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/494591
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact