Thermal field-flow fractionation (ThFFF) of various types of submicrometer silica particles in aqueous media is experimentally investigated under an extended range of medium ionic strengths with and without the presence of surfactant. The experiments were designed to examine the applicability to submicrometer particles of the theory of charged nanoparticles thermodiffusion recently proposed by Parola and Piazza (Parola, A.; Piazza, R. Eur. Phys. J. E. 2004, 15, 255-263). In particular, the expression for the calibration function in terms of particle radius and channel temperature is derived and experimentally verified. Moreover, retention is expected to be dependent on particle surface potential and charge, and on ionic strength. These dependences are experimentally investigated and the pertinent relationships and correlations derived. The effect of heavy metal adsorption on the silica surface was investigated, and significant ThFFF retention changes were measured. Independent measurements of the zeta potential (-potential) indicated that a decrease in the surface charge of a silica particle is a consequence of heavy metal adsorption, which is, in turn, correlated to the observed decrease in ThFFF retention.

Thermal Field-Flow Fractionation of Charged Submicrometer Particles in Aqueous Media

PASTI, Luisa;DONDI, Francesco
2007

Abstract

Thermal field-flow fractionation (ThFFF) of various types of submicrometer silica particles in aqueous media is experimentally investigated under an extended range of medium ionic strengths with and without the presence of surfactant. The experiments were designed to examine the applicability to submicrometer particles of the theory of charged nanoparticles thermodiffusion recently proposed by Parola and Piazza (Parola, A.; Piazza, R. Eur. Phys. J. E. 2004, 15, 255-263). In particular, the expression for the calibration function in terms of particle radius and channel temperature is derived and experimentally verified. Moreover, retention is expected to be dependent on particle surface potential and charge, and on ionic strength. These dependences are experimentally investigated and the pertinent relationships and correlations derived. The effect of heavy metal adsorption on the silica surface was investigated, and significant ThFFF retention changes were measured. Independent measurements of the zeta potential (-potential) indicated that a decrease in the surface charge of a silica particle is a consequence of heavy metal adsorption, which is, in turn, correlated to the observed decrease in ThFFF retention.
2007
Pasti, Luisa; Agnolet, S.; Dondi, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/471408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact