We consider a hyperbolic system of three conservation laws in one space variable. The system is a model for fluid flow allowing phase transitions; in this case the state variables are the specific volume, the velocity and the mass density fraction of the vapor in the fluid. For a class of initial data having large total variation we prove the global existence of solutions to the Cauchy problem.

On a model of multiphase flow

CORLI, Andrea
2008

Abstract

We consider a hyperbolic system of three conservation laws in one space variable. The system is a model for fluid flow allowing phase transitions; in this case the state variables are the specific volume, the velocity and the mass density fraction of the vapor in the fluid. For a class of initial data having large total variation we prove the global existence of solutions to the Cauchy problem.
2008
Amadori, D; Corli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/470262
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 31
social impact