The origin of the action potential in neurones has yet to be answered satisfactorily for most cells. We present here a five-conductance model of the somatic membrane of the mature and intact sympathetic neurone studied in situ in the isolated rat superior cervical ganglion under two-electrode voltage-clamp conditions. The neural membrane hosts five separate types of voltage-dependent ionic conductances, which have been isolated at 37 degrees C by using simple manipulations such as conditioning-test protocols and external ionic pharmacological treatments. The total current could be separated into two distinct inward components: (1) the sodium current, INa, and (2) the calcium current, ICa; and three outward components: (1) the delayed rectifier, IKV, (2) the transient IA, and (3) the calcium-dependent IKCa. Each current has been kinetically characterized in the framework of the Hodgkin-Huxley scheme used for the squid giant axon. Continuous mathematical functions are now available for the activation and inactivation (where present) gating mechanisms of each current which, together with the maximum conductance values measured in the experiments, allow for a satisfactory reconstruction of the individual current tracings over a wide range of membrane voltage. The results obtained are integrated in a full mathematical model which, by describing the electrical behaviour of the neurone under current-clamp conditions, leads to a quantitative understanding of the physiological firing pattern. While, as expected, the fast inward current carried by Na+ contributes to the depolarizing phase of the action potential, the spike falling phase is more complex than previous explanations. IKCa, with a minor contribution from IKV, repolarizes the neurone only under conditions of low cell internal negativity. Their role becomes less pronounced in the voltage range negative to -60 mV, where membrane repolarization allows IA to deinactivate. In the spike arising from these voltage levels the membrane repolarization is mainly sustained by IA, which proves to be the only current sufficiently fast and large enough to recharge the membrane capacitor at the speed observed during activity. Different modes of firing coexist in the same neurone and the switching from one to another is fast and governed by the membrane potential level, which makes the selection between the different voltage-dependent channel systems. The neurone thus seems to be prepared to operate within a wide voltage range; the results presented indicate the basic factors underlying the different discrete behaviours.
A five-conductance model of the action potential in the rat sympathetic neurone
BELLUZZI, Ottorino;SACCHI, Oscar
1991
Abstract
The origin of the action potential in neurones has yet to be answered satisfactorily for most cells. We present here a five-conductance model of the somatic membrane of the mature and intact sympathetic neurone studied in situ in the isolated rat superior cervical ganglion under two-electrode voltage-clamp conditions. The neural membrane hosts five separate types of voltage-dependent ionic conductances, which have been isolated at 37 degrees C by using simple manipulations such as conditioning-test protocols and external ionic pharmacological treatments. The total current could be separated into two distinct inward components: (1) the sodium current, INa, and (2) the calcium current, ICa; and three outward components: (1) the delayed rectifier, IKV, (2) the transient IA, and (3) the calcium-dependent IKCa. Each current has been kinetically characterized in the framework of the Hodgkin-Huxley scheme used for the squid giant axon. Continuous mathematical functions are now available for the activation and inactivation (where present) gating mechanisms of each current which, together with the maximum conductance values measured in the experiments, allow for a satisfactory reconstruction of the individual current tracings over a wide range of membrane voltage. The results obtained are integrated in a full mathematical model which, by describing the electrical behaviour of the neurone under current-clamp conditions, leads to a quantitative understanding of the physiological firing pattern. While, as expected, the fast inward current carried by Na+ contributes to the depolarizing phase of the action potential, the spike falling phase is more complex than previous explanations. IKCa, with a minor contribution from IKV, repolarizes the neurone only under conditions of low cell internal negativity. Their role becomes less pronounced in the voltage range negative to -60 mV, where membrane repolarization allows IA to deinactivate. In the spike arising from these voltage levels the membrane repolarization is mainly sustained by IA, which proves to be the only current sufficiently fast and large enough to recharge the membrane capacitor at the speed observed during activity. Different modes of firing coexist in the same neurone and the switching from one to another is fast and governed by the membrane potential level, which makes the selection between the different voltage-dependent channel systems. The neurone thus seems to be prepared to operate within a wide voltage range; the results presented indicate the basic factors underlying the different discrete behaviours.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.