Affinity-based biosensors employing surface-bound biomolecules for analyte detection are important tools in clinical diagnostics and drug development. In this context, electrolyte-gated organic transistors (EGOTs) are emerging as ultrasensitive label-free biosensors. In this study, we present an EGOT sensor integrated within a microfluidic system. The sensor utilizes the cytomegalovirus (CMV) phosphoprotein 65 as a biorecognition element to detect the pathological biomarker human anti-cytomegalovirus antibody in solution. The biorecognition element is grafted onto the gate electrode by exploiting the polyhistidine-tag technology. Real-time monitoring of the EGOT response, coupled with a two-compartment kinetic model analysis, enables the determination of analyte concentration, binding kinetics, and thermodynamics of the interaction. The analysis of the relevant kinetic parameters of the binding process yields a reliable value for the thermodynamic equilibrium constant and suggests that the measured deviations from the Langmuir binding model arise from the co-existence of binding sites with different affinities toward the antibodies.

Dynamic studies of antibody-antigen interactions with an electrolyte-gated organic transistor

Greco, Pierpaolo;Biscarini, Fabio
2024

Abstract

Affinity-based biosensors employing surface-bound biomolecules for analyte detection are important tools in clinical diagnostics and drug development. In this context, electrolyte-gated organic transistors (EGOTs) are emerging as ultrasensitive label-free biosensors. In this study, we present an EGOT sensor integrated within a microfluidic system. The sensor utilizes the cytomegalovirus (CMV) phosphoprotein 65 as a biorecognition element to detect the pathological biomarker human anti-cytomegalovirus antibody in solution. The biorecognition element is grafted onto the gate electrode by exploiting the polyhistidine-tag technology. Real-time monitoring of the EGOT response, coupled with a two-compartment kinetic model analysis, enables the determination of analyte concentration, binding kinetics, and thermodynamics of the interaction. The analysis of the relevant kinetic parameters of the binding process yields a reliable value for the thermodynamic equilibrium constant and suggests that the measured deviations from the Langmuir binding model arise from the co-existence of binding sites with different affinities toward the antibodies.
2024
Manco Urbina, Pamela Allison; Paradisi, Alessandro; Hasler, Roger; Sensi, Matteo; Berto, Marcello; Saygin, Gulseren Deniz; Dostalek, Jakub; Pinti, Mar...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2606275
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact