We study convergence of generalized Orlicz energies when the lower growth-rate tends to infinity. We generalize results by Bocea-Mih & abreve;ilescu (Orlicz case) and Eleuteri-Prinari (variable exponent case) and allow weaker assumptions: we are also able to handle unbounded domains with irregular boundary and non-doubling energies. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

Convergence of generalized Orlicz norms with lower growth rate tending to infinity

Bertazzoni G.;
2024

Abstract

We study convergence of generalized Orlicz energies when the lower growth-rate tends to infinity. We generalize results by Bocea-Mih & abreve;ilescu (Orlicz case) and Eleuteri-Prinari (variable exponent case) and allow weaker assumptions: we are also able to handle unbounded domains with irregular boundary and non-doubling energies. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
2024
Bertazzoni, G.; Harjulehto, P.; Hasto, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2603693
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact