Periprosthetic joint infection (PJI) remains a major complication in orthopedic surgery, with accurate and timely diagnosis being essential for optimal patient management. Tra- ditional culture-based diagnostics are often limited by suboptimal sensitivity, especially in biofilm-associated and low-virulence infections. In recent years, non-culture-based methodologies have gained prominence. Molecular techniques, such as polymerase chain reaction (PCR) and next-generation sequencing (NGS), offer enhanced detection of micro- bial DNA, even in culture-negative cases, and enable precise pathogen identification. In parallel, extensive research has focused on biomarkers, including systemic (e.g., C-reactive protein, fibrinogen, D-dimer), synovial (e.g., alpha-defensin, calprotectin, interleukins), and pathogen-derived markers (e.g., D-lactate), the latter reflecting metabolic products secreted by microorganisms during infection. The development of multiplex platforms now allows for the simultaneous measurement of multiple synovial biomarkers, improving diagnostic accuracy and turnaround time. Furthermore, the integration of artificial intelligence (AI) and machine learning algorithms into diagnostic workflows has opened new avenues for combining clinical, molecular, and biochemical data. These models can generate probability scores for PJI diagnosis with high accuracy, supporting clinical decision-making. While these technologies are still being validated for routine use, their convergence marks a significant step toward precision diagnostics in PJI, potentially improving early detection, reducing diagnostic uncertainty, and guiding targeted therapy.
Beyond Cultures: The Evolving Role of Molecular Diagnostics, Synovial Biomarkers and Artificial Intelligence in the Diagnosis of Prosthetic Joint Infections
Martina Maritati
Primo
;Giuseppe De RitoSecondo
;Matteo Guarino;Roberto De Giorgio;Carlo ContiniPenultimo
;
2025
Abstract
Periprosthetic joint infection (PJI) remains a major complication in orthopedic surgery, with accurate and timely diagnosis being essential for optimal patient management. Tra- ditional culture-based diagnostics are often limited by suboptimal sensitivity, especially in biofilm-associated and low-virulence infections. In recent years, non-culture-based methodologies have gained prominence. Molecular techniques, such as polymerase chain reaction (PCR) and next-generation sequencing (NGS), offer enhanced detection of micro- bial DNA, even in culture-negative cases, and enable precise pathogen identification. In parallel, extensive research has focused on biomarkers, including systemic (e.g., C-reactive protein, fibrinogen, D-dimer), synovial (e.g., alpha-defensin, calprotectin, interleukins), and pathogen-derived markers (e.g., D-lactate), the latter reflecting metabolic products secreted by microorganisms during infection. The development of multiplex platforms now allows for the simultaneous measurement of multiple synovial biomarkers, improving diagnostic accuracy and turnaround time. Furthermore, the integration of artificial intelligence (AI) and machine learning algorithms into diagnostic workflows has opened new avenues for combining clinical, molecular, and biochemical data. These models can generate probability scores for PJI diagnosis with high accuracy, supporting clinical decision-making. While these technologies are still being validated for routine use, their convergence marks a significant step toward precision diagnostics in PJI, potentially improving early detection, reducing diagnostic uncertainty, and guiding targeted therapy.| File | Dimensione | Formato | |
|---|---|---|---|
|
beyond-cultures.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
jcm-14-06886.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


