The Digital Product Passport (DPP) is an emergent strategic tool poised to significantly enhance traceability, circularity, and sustainability within industrial supply chains, aligning with evolving European Union regulatory frameworks. This paper introduces a conceptual sensor-based DPP architecture specifically designed for the construction industry, exemplified by a real case study for a bio-based manufacturing company. This framework facilitates a transparent and accessible data management approach, crucial for fostering circular practices and guiding stakeholders in decision-making along the value chain. The proposed architecture addresses critical challenges in product-related traceability and information accessibility across the entire product life cycle, spanning from raw material supply to the construction and installation process (A1–A5 stages). Data collected from the low-tech sensor network and digital tools can generate relevant environmental indicators for Life Cycle Assessment (LCA) and DPP creation, thereby offering a comprehensive, detailed, and certified overview of product attributes and their environmental impacts. The study clarifies the benefits and current barriers to implementing a sensor-based DPP architecture in low-tech construction manufacturing, underscoring the potential of lightweight, interoperable sensing solutions to advance compliance, transparency, and digitalization in traditionally under-digitized sectors like construction materials manufacturing.

Design of a Sensor-Based Digital Product Passport for Low-Tech Manufacturing: Traceability and Environmental Monitoring in Bio-Block Production

Pracucci, Alessandro
Primo
Methodology
;
2025

Abstract

The Digital Product Passport (DPP) is an emergent strategic tool poised to significantly enhance traceability, circularity, and sustainability within industrial supply chains, aligning with evolving European Union regulatory frameworks. This paper introduces a conceptual sensor-based DPP architecture specifically designed for the construction industry, exemplified by a real case study for a bio-based manufacturing company. This framework facilitates a transparent and accessible data management approach, crucial for fostering circular practices and guiding stakeholders in decision-making along the value chain. The proposed architecture addresses critical challenges in product-related traceability and information accessibility across the entire product life cycle, spanning from raw material supply to the construction and installation process (A1–A5 stages). Data collected from the low-tech sensor network and digital tools can generate relevant environmental indicators for Life Cycle Assessment (LCA) and DPP creation, thereby offering a comprehensive, detailed, and certified overview of product attributes and their environmental impacts. The study clarifies the benefits and current barriers to implementing a sensor-based DPP architecture in low-tech construction manufacturing, underscoring the potential of lightweight, interoperable sensing solutions to advance compliance, transparency, and digitalization in traditionally under-digitized sectors like construction materials manufacturing.
2025
Pracucci, Alessandro; Giovanardi, Matteo
File in questo prodotto:
File Dimensione Formato  
sensors-25-05653-v2.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2598050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact