We review some geometric criteria and prove a refined version, that yield existence of capillary surfaces in tubes $\Omega\times \mathbb{R}$ in a gravity free environment, in the case of physical interest, that is, for bounded, open, and simply connected $\Omega \subset \mathbb{R}^2$. These criteria rely on suitable weak one-sided bounds on the curvature of the boundary of the cross-section $\Omega$.

Geometric criteria for the existence of capillary surfaces in tubes

Saracco G.
Primo
2024

Abstract

We review some geometric criteria and prove a refined version, that yield existence of capillary surfaces in tubes $\Omega\times \mathbb{R}$ in a gravity free environment, in the case of physical interest, that is, for bounded, open, and simply connected $\Omega \subset \mathbb{R}^2$. These criteria rely on suitable weak one-sided bounds on the curvature of the boundary of the cross-section $\Omega$.
2024
Saracco, G.
File in questo prodotto:
File Dimensione Formato  
2024 - Geometric criteria for the existence of capillary surfaces in tubes - Saracco.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 374.46 kB
Formato Adobe PDF
374.46 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2596852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact