We prove a lower bound for the Cheeger constant of a cylinder $\Omega\times (0,L)$, where $\Omega$ is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the $p$-Laplacian and the $p$-th power of the Cheeger constant, within the class of bounded convex sets in any $\R^N$. This positively solves open conjectures raised by Parini (\emph{J.\ Convex Anal.}\ (2017)) and by Briani--Buttazzo--Prinari (\emph{Ann.\ Mat.\ Pura Appl.}\ (2023)).

Cylindrical estimates for the Cheeger constant and applications

Saracco G.
Ultimo
2025

Abstract

We prove a lower bound for the Cheeger constant of a cylinder $\Omega\times (0,L)$, where $\Omega$ is an open and bounded set. As a consequence, we obtain existence of minimizers for the shape functional defined as the ratio between the first Dirichlet eigenvalue of the $p$-Laplacian and the $p$-th power of the Cheeger constant, within the class of bounded convex sets in any $\R^N$. This positively solves open conjectures raised by Parini (\emph{J.\ Convex Anal.}\ (2017)) and by Briani--Buttazzo--Prinari (\emph{Ann.\ Mat.\ Pura Appl.}\ (2023)).
2025
Pratelli, A.; Saracco, G.
File in questo prodotto:
File Dimensione Formato  
2025 - Cylindrical estimates for the Cheeger constant and applications - Pratelli, Saracco.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 385.34 kB
Formato Adobe PDF
385.34 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2596782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact