Growing concern for environmental sustainability has resulted in the implementation of sanitization methods that respect ecological principles. This research evaluates a “green” sanitizing protocol that uses CAM (Minimum Environmental Criteria)-compliant products against a traditional protocol within two ASL Roma 1 facilities. The study performed a Life Cycle Assessment (LCA) following ISO 14040, ISO 14044, and ISO 14067 standards to measure greenhouse gases emissions. Microbiological sampling was conducted according to established protocols across three different risk zones utilizing contact plates and surface swabs. The Life Cycle Assessment showed that CO2 emissions reduced by 49.6% to 53.3% at different sites due to reduced energy use together with concentrated detergents and improved washing cycles. Microbiological testing revealed notable decreases in contamination rates across both cleaning systems yet demonstrated the “green” system achieved superior results specifically within high-risk zones. The “green” protocol matched traditional cleaning methods hygienically but delivered significant environmental advantages which positions it as a sustainable hospital cleaning solution.
Eco-Friendly vs. Traditional Cleaning in Healthcare Settings: Microbial Safety and Environmental Footprint
Fontana, RiccardoPrimo
;Buratto, MattiaSecondo
;Caproni, Anna;Nordi, Chiara;Pappada, Mariangela;Facchini, Martina;Marconi, Peggy
Ultimo
2025
Abstract
Growing concern for environmental sustainability has resulted in the implementation of sanitization methods that respect ecological principles. This research evaluates a “green” sanitizing protocol that uses CAM (Minimum Environmental Criteria)-compliant products against a traditional protocol within two ASL Roma 1 facilities. The study performed a Life Cycle Assessment (LCA) following ISO 14040, ISO 14044, and ISO 14067 standards to measure greenhouse gases emissions. Microbiological sampling was conducted according to established protocols across three different risk zones utilizing contact plates and surface swabs. The Life Cycle Assessment showed that CO2 emissions reduced by 49.6% to 53.3% at different sites due to reduced energy use together with concentrated detergents and improved washing cycles. Microbiological testing revealed notable decreases in contamination rates across both cleaning systems yet demonstrated the “green” system achieved superior results specifically within high-risk zones. The “green” protocol matched traditional cleaning methods hygienically but delivered significant environmental advantages which positions it as a sustainable hospital cleaning solution.| File | Dimensione | Formato | |
|---|---|---|---|
|
hygiene-05-00037-v2.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


