Ozone-induced inflammation has been linked to the development of skin ailments including atopic dermatitis, acne vulgaris, eczema and psoriasis, mainly through a redox-inflammatory pathway. While ozone cannot penetrate the cutaneous layers, it is able to damage the skin through oxinflammatory reactions in the epidermis that lead to the generation of lipid-peroxides, aldehydes, and H2O2. When the production of these bioactive oxidative molecules overwhelms the cutaneous redox defenses, cutaneous damage incurs. Antimicrobial peptides (AMPs) are effector molecules that regulate a variety of cutaneous immune responses. Increased AMPs levels have also been detected in active lesions of inflammatory skin diseases. Our previous research has shown that exposure to either ozone induced the expression of cutaneous AMPs (LL-37, beta-defensin 2, and beta-defensin 3) levels in ex vivo skin explants, corroborating the hypothesis that ozone exposure might worsen inflammatory skin conditions via AMPs de-regulation. In the present work, to further assess the cutaneous AMPs responses in a more physiological setting, skin models cultured under physiological tension (TenBio) were expose to ozone. As a proof of concept, cutaneous models were pre-treated with a variety of redox inhibitors (catalase, deferoxamine (DFO) and VAS2870 (VAS)) before ozone exposure to better understand the involvement of a redox signaling. Our data demonstrates that even in the most realistic cutaneous ex vivo model, ozone induces LL-37, hBD2, and hBD3 protein levels through a redox mechanism. This study lays the basis to uncover the mechanisms of ozone dysregulation of cutaneous AMPs, a fundamental step to understanding the development/worsening of pollution-linked inflammatory skin conditions.

Redox regulation of cutaneous AMPs by ozone in tensioned skin models

Pecorelli A.
Membro del Collaboration Group
;
Valacchi G.
Ultimo
Project Administration
2025

Abstract

Ozone-induced inflammation has been linked to the development of skin ailments including atopic dermatitis, acne vulgaris, eczema and psoriasis, mainly through a redox-inflammatory pathway. While ozone cannot penetrate the cutaneous layers, it is able to damage the skin through oxinflammatory reactions in the epidermis that lead to the generation of lipid-peroxides, aldehydes, and H2O2. When the production of these bioactive oxidative molecules overwhelms the cutaneous redox defenses, cutaneous damage incurs. Antimicrobial peptides (AMPs) are effector molecules that regulate a variety of cutaneous immune responses. Increased AMPs levels have also been detected in active lesions of inflammatory skin diseases. Our previous research has shown that exposure to either ozone induced the expression of cutaneous AMPs (LL-37, beta-defensin 2, and beta-defensin 3) levels in ex vivo skin explants, corroborating the hypothesis that ozone exposure might worsen inflammatory skin conditions via AMPs de-regulation. In the present work, to further assess the cutaneous AMPs responses in a more physiological setting, skin models cultured under physiological tension (TenBio) were expose to ozone. As a proof of concept, cutaneous models were pre-treated with a variety of redox inhibitors (catalase, deferoxamine (DFO) and VAS2870 (VAS)) before ozone exposure to better understand the involvement of a redox signaling. Our data demonstrates that even in the most realistic cutaneous ex vivo model, ozone induces LL-37, hBD2, and hBD3 protein levels through a redox mechanism. This study lays the basis to uncover the mechanisms of ozone dysregulation of cutaneous AMPs, a fundamental step to understanding the development/worsening of pollution-linked inflammatory skin conditions.
2025
Ivarsson, J.; Pambianchi, E.; Pecorelli, A.; Lim, Y.; Valacchi, G.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0003986125001225-main.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2596213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact