This letter addresses a recently published article evaluating the performance of 3D U-Net–based deep learning models for automated lesion segmentation in PET/CT imaging. The study represents a significant advancement in the integration of artificial intelligence (AI) into Nuclear Medicine. By comparing volumetric, MIP-based, and hybrid segmentation approaches using [¹⁸F]FDG and [⁶⁸Ga]Ga-PSMA radiotracers, the authors demonstrate that hybrid models can enhance lesion detection and contouring accuracy. These findings underscore the potential of AI-based segmentation to improve consistency and reduce the manual workload in clinical PET/CT interpretation. We consider this work a pivotal step toward the clinical adoption of AI tools, offering tangible benefits for routine practice and radiomic analysis, while preserving the essential supervisory role of the Nuclear Medicine Physician.

Artificial intelligence & nuclear medicine: an emerging partnership

Manco, Luigi
Primo
;
Szilagyi, Klarisa Elena;Urso, Luca
Ultimo
2025

Abstract

This letter addresses a recently published article evaluating the performance of 3D U-Net–based deep learning models for automated lesion segmentation in PET/CT imaging. The study represents a significant advancement in the integration of artificial intelligence (AI) into Nuclear Medicine. By comparing volumetric, MIP-based, and hybrid segmentation approaches using [¹⁸F]FDG and [⁶⁸Ga]Ga-PSMA radiotracers, the authors demonstrate that hybrid models can enhance lesion detection and contouring accuracy. These findings underscore the potential of AI-based segmentation to improve consistency and reduce the manual workload in clinical PET/CT interpretation. We consider this work a pivotal step toward the clinical adoption of AI tools, offering tangible benefits for routine practice and radiomic analysis, while preserving the essential supervisory role of the Nuclear Medicine Physician.
2025
Manco, Luigi; Szilagyi, Klarisa Elena; Urso, Luca
File in questo prodotto:
File Dimensione Formato  
Manco AI_NM editorial CATI 2025.pdf

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: Copyright dell'editore
Dimensione 555.91 kB
Formato Adobe PDF
555.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
s40336-025-00723-x.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 518.24 kB
Formato Adobe PDF
518.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2595990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact