In this work, we combined microalgae's sorptive properties with titania-based nanoparticles' photocatalytic capabilities to develop technologies applicable to wastewater treatment while also providing valuable insights into the innovation of adsorption technologies. The coupling of Neochloris oleoabundans biomass with an inorganic nanophase enables the formation of hybrid materials integrating heavy metal adsorption with photocatalytic action. To prepare the samples, we employed a water-based colloidal method followed by a spray freeze granulation treatment. The preparation process was followed by comprehensive physicochemical characterization from the wet precursors to the final hybrid granules. Key performance indicators, including adsorption and photocatalytic activity, were assessed using two model contaminants: copper ions (for heavy metal adsorption) and Rhodamine B (for photocatalysis). The results revealed a synergistic effect of the hybrid nanomaterials, significantly enhancing the Cu2+ adsorption capacity of the biomass, which increases from 30 mg g−1 to 250 mg g−1 when coupled with the inorganic phase and is likely due to the supporting and dispersing role of the inorganic nanoparticles on the biomass. The adsorption experimental values followed the Freundlich isothermal model and pseudo-second-order kinetic model, indicating that the adsorption occurred primarily through a multimolecular layer adsorption process, consistent with chemisorption mechanisms. The photocatalytic performance of the inorganic counterpart was preserved when coupled with the microalgae, with TiO2–SiO2/biomass achieving complete Rhodamine B degradation within 1 hour.

Hybrid materials for wastewater treatment: synergistic coupling of Neochloris oleoabundans and TiO2 nanoparticles

Pierluigi Giaco'
Investigation
;
Costanza Baldisserotto
Investigation
;
Simonetta Pancaldi
Penultimo
Funding Acquisition
;
2025

Abstract

In this work, we combined microalgae's sorptive properties with titania-based nanoparticles' photocatalytic capabilities to develop technologies applicable to wastewater treatment while also providing valuable insights into the innovation of adsorption technologies. The coupling of Neochloris oleoabundans biomass with an inorganic nanophase enables the formation of hybrid materials integrating heavy metal adsorption with photocatalytic action. To prepare the samples, we employed a water-based colloidal method followed by a spray freeze granulation treatment. The preparation process was followed by comprehensive physicochemical characterization from the wet precursors to the final hybrid granules. Key performance indicators, including adsorption and photocatalytic activity, were assessed using two model contaminants: copper ions (for heavy metal adsorption) and Rhodamine B (for photocatalysis). The results revealed a synergistic effect of the hybrid nanomaterials, significantly enhancing the Cu2+ adsorption capacity of the biomass, which increases from 30 mg g−1 to 250 mg g−1 when coupled with the inorganic phase and is likely due to the supporting and dispersing role of the inorganic nanoparticles on the biomass. The adsorption experimental values followed the Freundlich isothermal model and pseudo-second-order kinetic model, indicating that the adsorption occurred primarily through a multimolecular layer adsorption process, consistent with chemisorption mechanisms. The photocatalytic performance of the inorganic counterpart was preserved when coupled with the microalgae, with TiO2–SiO2/biomass achieving complete Rhodamine B degradation within 1 hour.
2025
Zanoni, Ilaria; Amadori, Sara; Brigliadori, Andrea; Luisa Costa, Anna; Ortelli, Simona; Giaco', Pierluigi; Baldisserotto, Costanza; Pancaldi, Simonett...espandi
File in questo prodotto:
File Dimensione Formato  
2025 Blosi_Nanoscale Adv.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.18 MB
Formato Adobe PDF
3.18 MB Adobe PDF Visualizza/Apri
2025 Blosi_Nanoscale Adv_SUPPL.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 154.6 kB
Formato Adobe PDF
154.6 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2594837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact