We study the spectral properties of a Schrödinger operator, in presence of a confining potential given by the distance squared from a fixed compact potential well. We prove continuity estimates on both the eigenvalues and the eigenstates, lower bounds on the ground state energy, regularity and integrability properties of eigenstates. We also get explicit decay estimates at infinity, by means of elementary nonlinear methods.
A Schrödinger operator with confining potential having quadratic growth
Alessi, ChiaraPrimo
;Brasco, Lorenzo
Secondo
;Miranda, MicheleUltimo
2025
Abstract
We study the spectral properties of a Schrödinger operator, in presence of a confining potential given by the distance squared from a fixed compact potential well. We prove continuity estimates on both the eigenvalues and the eigenstates, lower bounds on the ground state energy, regularity and integrability properties of eigenstates. We also get explicit decay estimates at infinity, by means of elementary nonlinear methods.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
editoriale s13324-025-01063-9.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
540.89 kB
Formato
Adobe PDF
|
540.89 kB | Adobe PDF | Visualizza/Apri |
|
2505.11113v1.pdf
solo gestori archivio
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
608.15 kB
Formato
Adobe PDF
|
608.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


