Cryogenic phonon detectors are adopted in experiments searching for dark matter interactions or coherent elastic neutrino-nucleus scattering, thanks to the low energy threshold they can achieve. The phonon-mediated sensing of particle interactions in passive silicon absorbers has been demonstrated with kinetic inductance detectors (KIDs). Targets with neutron number larger than silicon, however, feature a higher cross section to neutrinos, while multi-target absorbers in the dark matter experiments would provide a stronger evidence of a possible signal. In this work, we present the design, fabrication, and operation of KIDs coupled to a germanium absorber, achieving phonon-sensing performance comparable to silicon absorbers. The device introduced in this work is a proof of concept for a scalable neutrino detector and for a multi-target dark matter experiment.

Germanium target sensed by phonon-mediated kinetic inductance detectors

Bandiera, L.;Guidi, V.;Romagnoni, M.;Mazzolari, A.;
2025

Abstract

Cryogenic phonon detectors are adopted in experiments searching for dark matter interactions or coherent elastic neutrino-nucleus scattering, thanks to the low energy threshold they can achieve. The phonon-mediated sensing of particle interactions in passive silicon absorbers has been demonstrated with kinetic inductance detectors (KIDs). Targets with neutron number larger than silicon, however, feature a higher cross section to neutrinos, while multi-target absorbers in the dark matter experiments would provide a stronger evidence of a possible signal. In this work, we present the design, fabrication, and operation of KIDs coupled to a germanium absorber, achieving phonon-sensing performance comparable to silicon absorbers. The device introduced in this work is a proof of concept for a scalable neutrino detector and for a multi-target dark matter experiment.
2025
Delicato, D.; Angelone, D.; Bandiera, L.; Calvo, M.; Cappelli, M.; Chowdhury, U.; Del Castello, G.; Folcarelli, M.; Del Gallo Roccagiovine, M.; Guidi,...espandi
File in questo prodotto:
File Dimensione Formato  
APL24-AR-11197.pdf

accesso aperto

Descrizione: Post-print
Tipologia: Post-print
Licenza: Copyright dell'editore
Dimensione 608.61 kB
Formato Adobe PDF
608.61 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2593399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact