We study a family of periodic traveling wave solution of a pure quartic generalized nonlinear Schrödinger equation (NLSE). We focus on dn-oidal-like solutions with a nonzero average component. After numerically finding a one-parameter family of solutions and comparing it to their conventional NLSE counterpart, we numerically solve the corresponding modulational instability problem. This shows a nontrivial trend, where the instability occurs in specific intervals of the parameter separated by stability islands. Numerical simulations confirm the soundness of this result, thus proving that high-order dispersion terms in an optical waveguide allow to observe the propagation of regular and stable comb-like spectra.
Pure quartic traveling wave solutions: a numerical study
Armaroli, Andrea
Primo
2025
Abstract
We study a family of periodic traveling wave solution of a pure quartic generalized nonlinear Schrödinger equation (NLSE). We focus on dn-oidal-like solutions with a nonzero average component. After numerically finding a one-parameter family of solutions and comparing it to their conventional NLSE counterpart, we numerically solve the corresponding modulational instability problem. This shows a nontrivial trend, where the instability occurs in specific intervals of the parameter separated by stability islands. Numerical simulations confirm the soundness of this result, thus proving that high-order dispersion terms in an optical waveguide allow to observe the propagation of regular and stable comb-like spectra.| File | Dimensione | Formato | |
|---|---|---|---|
|
Armaroli_OL2025_Pure_quartic_traveling_wave_solutions_a_numerical_study.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Copyright dell'editore
Dimensione
3.19 MB
Formato
Adobe PDF
|
3.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Armaroli_OL2025_Pure_quartic_traveling_wave_solutions_a_numerical_study_suppl.pdf
solo gestori archivio
Descrizione: Materiale supplementare
Tipologia:
Altro materiale allegato
Licenza:
Copyright dell'editore
Dimensione
358.9 kB
Formato
Adobe PDF
|
358.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


