We study a family of periodic traveling wave solution of a pure quartic generalized nonlinear Schrödinger equation (NLSE). We focus on dn-oidal-like solutions with a nonzero average component. After numerically finding a one-parameter family of solutions and comparing it to their conventional NLSE counterpart, we numerically solve the corresponding modulational instability problem. This shows a nontrivial trend, where the instability occurs in specific intervals of the parameter separated by stability islands. Numerical simulations confirm the soundness of this result, thus proving that high-order dispersion terms in an optical waveguide allow to observe the propagation of regular and stable comb-like spectra.

Pure quartic traveling wave solutions: a numerical study

Armaroli, Andrea
Primo
2025

Abstract

We study a family of periodic traveling wave solution of a pure quartic generalized nonlinear Schrödinger equation (NLSE). We focus on dn-oidal-like solutions with a nonzero average component. After numerically finding a one-parameter family of solutions and comparing it to their conventional NLSE counterpart, we numerically solve the corresponding modulational instability problem. This shows a nontrivial trend, where the instability occurs in specific intervals of the parameter separated by stability islands. Numerical simulations confirm the soundness of this result, thus proving that high-order dispersion terms in an optical waveguide allow to observe the propagation of regular and stable comb-like spectra.
2025
Armaroli, Andrea
File in questo prodotto:
File Dimensione Formato  
Armaroli_OL2025_Pure_quartic_traveling_wave_solutions_a_numerical_study.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Copyright dell'editore
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Armaroli_OL2025_Pure_quartic_traveling_wave_solutions_a_numerical_study_suppl.pdf

solo gestori archivio

Descrizione: Materiale supplementare
Tipologia: Altro materiale allegato
Licenza: Copyright dell'editore
Dimensione 358.9 kB
Formato Adobe PDF
358.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2591550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact