We prove a two-sided estimate on the sharp Lp Poincaré constant of a general open set, in terms of a capacitary variant of its inradius. This extends a result by Maz'ya and Shubin, originally devised for the case p = 2, in the subconformal regime. We cover the whole range of p, by allowing in particular the extremal cases p = 1 (Cheeger's constant) and p = N (conformal case), as well. We also discuss the more general case of the sharp Poincaré-Sobolev embedding constants and get an analogous result. Finally, we present a brief discussion on the superconformal case, as well as some examples and counter-examples.

Capacitary inradius and Poincaré-Sobolev inequalities

Bozzola F.
Primo
;
Brasco L.
Ultimo
2025

Abstract

We prove a two-sided estimate on the sharp Lp Poincaré constant of a general open set, in terms of a capacitary variant of its inradius. This extends a result by Maz'ya and Shubin, originally devised for the case p = 2, in the subconformal regime. We cover the whole range of p, by allowing in particular the extremal cases p = 1 (Cheeger's constant) and p = N (conformal case), as well. We also discuss the more general case of the sharp Poincaré-Sobolev embedding constants and get an analogous result. Finally, we present a brief discussion on the superconformal case, as well as some examples and counter-examples.
2025
Bozzola, F.; Brasco, L.
File in questo prodotto:
File Dimensione Formato  
bozbra_capin_final_rev.pdf

solo gestori archivio

Descrizione: Post-print
Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 862.58 kB
Formato Adobe PDF
862.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
cocv240127.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2589390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact