We prove a two-sided estimate on the sharp Lp Poincaré constant of a general open set, in terms of a capacitary variant of its inradius. This extends a result by Maz'ya and Shubin, originally devised for the case p = 2, in the subconformal regime. We cover the whole range of p, by allowing in particular the extremal cases p = 1 (Cheeger's constant) and p = N (conformal case), as well. We also discuss the more general case of the sharp Poincaré-Sobolev embedding constants and get an analogous result. Finally, we present a brief discussion on the superconformal case, as well as some examples and counter-examples.
Capacitary inradius and Poincaré-Sobolev inequalities
Bozzola F.Primo
;Brasco L.
Ultimo
2025
Abstract
We prove a two-sided estimate on the sharp Lp Poincaré constant of a general open set, in terms of a capacitary variant of its inradius. This extends a result by Maz'ya and Shubin, originally devised for the case p = 2, in the subconformal regime. We cover the whole range of p, by allowing in particular the extremal cases p = 1 (Cheeger's constant) and p = N (conformal case), as well. We also discuss the more general case of the sharp Poincaré-Sobolev embedding constants and get an analogous result. Finally, we present a brief discussion on the superconformal case, as well as some examples and counter-examples.| File | Dimensione | Formato | |
|---|---|---|---|
|
bozbra_capin_final_rev.pdf
solo gestori archivio
Descrizione: Post-print
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
862.58 kB
Formato
Adobe PDF
|
862.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
cocv240127.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


