Prenatal treatment with synthetic glucocorticoids is commonly used as a treatment for women at risk of preterm delivery. However, little is known about the life-long consequences of these treatments on the fetus. In the present study, we evaluated cognitive function as well as susceptibility of cholinergic neurons to (192)IgG-saporin immunolesion in adult rats after prenatal glucocorticoid treatment. Morris water maze results revealed a significant difference in learning and memory function in adult rats that were prenatally exposed to dexamethasone, and further cognitive deficits after (192)IgG-saporin exposure. Choline acetyl transferase activity was decreased in the cortex of dexamethasone-treated rats compared with controls. In addition, rats prenatally exposed to either dexa, or betamethasone revealed a dramatic decrease in choline acetyl transferase activity compared to control rats after (192)IgG-saporin lesion. We report behavioral and biochemical evidence for altered cognitive function and increased susceptibility of cholinergic neurons to (192)IgG-saporin in adult rats after prenatal glucocorticoid treatment. Taken together, these results suggest that prenatal treatment with dexamethasone could affect cognitive functions and render cholinergic neurons more vulnerable to challenges later in life.

Prenatal glucocorticoid exposure affects learning and vulnerability of cholinergic neurons

FERNANDEZ M.;
2007

Abstract

Prenatal treatment with synthetic glucocorticoids is commonly used as a treatment for women at risk of preterm delivery. However, little is known about the life-long consequences of these treatments on the fetus. In the present study, we evaluated cognitive function as well as susceptibility of cholinergic neurons to (192)IgG-saporin immunolesion in adult rats after prenatal glucocorticoid treatment. Morris water maze results revealed a significant difference in learning and memory function in adult rats that were prenatally exposed to dexamethasone, and further cognitive deficits after (192)IgG-saporin exposure. Choline acetyl transferase activity was decreased in the cortex of dexamethasone-treated rats compared with controls. In addition, rats prenatally exposed to either dexa, or betamethasone revealed a dramatic decrease in choline acetyl transferase activity compared to control rats after (192)IgG-saporin lesion. We report behavioral and biochemical evidence for altered cognitive function and increased susceptibility of cholinergic neurons to (192)IgG-saporin in adult rats after prenatal glucocorticoid treatment. Taken together, these results suggest that prenatal treatment with dexamethasone could affect cognitive functions and render cholinergic neurons more vulnerable to challenges later in life.
2007
Emgard, M; Paradisi, M; Pirondi, S; Fernandez, M.; Giardino, L; Calza, L
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2589252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact