Given a finite non-cyclic group G, call G the least number of proper subgroups of G needed to cover G. In this article, we give lower and upper bounds for G for G a group with a unique minimal normal subgroup N isomorphic to Alt(m)^n where n ≥ 5 and G/N is cyclic. We also show that s(A5wrC2) = 57.

Given a finite non-cyclic group G, call σ(G) the least number of proper subgroups of G needed to cover G. In this article, we give lower and upper bounds for σ(G) for G a group with a unique minimal normal subgroup N isomorphic to Amn where n ≥ 5 and G/N is cyclic. We also show that σ(A5{wreath product}C2) = 57. © 2013 Copyright Taylor and Francis Group, LLC.

Covering Certain Monolithic Groups with Proper Subgroups

GARONZI, MARTINO
2013

Abstract

Given a finite non-cyclic group G, call σ(G) the least number of proper subgroups of G needed to cover G. In this article, we give lower and upper bounds for σ(G) for G a group with a unique minimal normal subgroup N isomorphic to Amn where n ≥ 5 and G/N is cyclic. We also show that σ(A5{wreath product}C2) = 57. © 2013 Copyright Taylor and Francis Group, LLC.
2013
Garonzi, Martino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact