We prove that any finite nonsolvable group is a product of at most 36 conjugates of a proper subgroup and we give an upper bound in the case of solvable groups.

For every non-nilpotent finite group G, there exists at least one proper subgroup M such that G is the setwise product of a finite number of conjugates of M. We define γcp(G) to be the smallest number k such that G is a product, in some order, of k pairwise conjugated proper subgroups of G. We prove that if G is non-solvable then γcp(G)≤36 while if G is solvable then γcp(G) can attain any integer value bigger than 2, while, on the other hand, γcp(G)≤4log2|G|.

Factorizing a finite group into conjugates of a subgroup

Garonzi M
;
2014

Abstract

For every non-nilpotent finite group G, there exists at least one proper subgroup M such that G is the setwise product of a finite number of conjugates of M. We define γcp(G) to be the smallest number k such that G is a product, in some order, of k pairwise conjugated proper subgroups of G. We prove that if G is non-solvable then γcp(G)≤36 while if G is solvable then γcp(G) can attain any integer value bigger than 2, while, on the other hand, γcp(G)≤4log2|G|.
2014
Garonzi, M; Levy, D
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588535
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact