A combinatorial block design D is called f-pyramidal if there exists a subgroup G of Aut(D) fixing f points and acting regularly on the other points. If this happens, we say that the design is f-pyramidal under G. In case D is a 3-pyramidal Kirkman triple system, it is known that such a group G has precisely 3 involutions, all conjugate to each other. In this paper, we obtain a classification of the groups with this property.

The structure of 3-pyramidal groups

Garonzi, Martino
Ultimo
2023

Abstract

A combinatorial block design D is called f-pyramidal if there exists a subgroup G of Aut(D) fixing f points and acting regularly on the other points. If this happens, we say that the design is f-pyramidal under G. In case D is a 3-pyramidal Kirkman triple system, it is known that such a group G has precisely 3 involutions, all conjugate to each other. In this paper, we obtain a classification of the groups with this property.
2023
Gao, Xiaofang; Garonzi, Martino
File in questo prodotto:
File Dimensione Formato  
26_The_Structure_of_3_Pyramidal_Groups_JALG.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 350.81 kB
Formato Adobe PDF
350.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact