We prove that every finite simple group G of Lie type satisfies G = UU-UU-, where U is a unipotent Sylow subgroup of G and U- is its opposite. We also characterize the cases for which G = UU-U. These results are best possible in terms of the number of conjugates of U in the above factorizations.

Minimal length factorizations of finite simple groups of Lie type by unipotent Sylow subgroups

Garonzi M;
2016

Abstract

We prove that every finite simple group G of Lie type satisfies G = UU-UU-, where U is a unipotent Sylow subgroup of G and U- is its opposite. We also characterize the cases for which G = UU-U. These results are best possible in terms of the number of conjugates of U in the above factorizations.
2016
Garonzi, M; Levy, D; Maróti, A; Simion, I
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact