Let G be the alternating group of degree n. Let ω(G) be the maximal size of a subset S of G such that 〈x,y〉=G whenever x,y∈S and x≠y and let σ(G) be the minimal size of a family of proper subgroups of G whose union is G. We prove that, when n varies in the family of composite numbers, σ(G)/ω(G) tends to 1 as n→∞. Moreover, we explicitly calculate σ(An) for n≥21 congruent to 3 modulo 18.

On the maximal number of elements pairwise generating the finite alternating group

Garonzi, Martino
Secondo
;
2024

Abstract

Let G be the alternating group of degree n. Let ω(G) be the maximal size of a subset S of G such that 〈x,y〉=G whenever x,y∈S and x≠y and let σ(G) be the minimal size of a family of proper subgroups of G whose union is G. We prove that, when n varies in the family of composite numbers, σ(G)/ω(G) tends to 1 as n→∞. Moreover, we explicitly calculate σ(An) for n≥21 congruent to 3 modulo 18.
2024
Fumagalli, Francesco; Garonzi, Martino; Gheri, Pietro
File in questo prodotto:
File Dimensione Formato  
27_Omega_Alt(n)_JCTA.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 355.73 kB
Formato Adobe PDF
355.73 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact