A Kirkman Triple System Γ is called m-pyramidal if there exists a subgroup G of the automorphism group of Γ that fixes m points and acts regularly on the other points. Such group G admits a unique conjugacy class C of involutions (elements of order 2) and |C|=m. We call groups with this property m-pyramidal. We prove that, if m is an odd prime power pk, with p≠7, then every m-pyramidal group is solvable if and only if either m=9 or k is odd. The primitive permutation groups play an important role in the proof. We also determine the orders of the m-pyramidal groups when m is a prime number.

On pyramidal groups of prime power degree

Garonzi, Martino
Ultimo
2025

Abstract

A Kirkman Triple System Γ is called m-pyramidal if there exists a subgroup G of the automorphism group of Γ that fixes m points and acts regularly on the other points. Such group G admits a unique conjugacy class C of involutions (elements of order 2) and |C|=m. We call groups with this property m-pyramidal. We prove that, if m is an odd prime power pk, with p≠7, then every m-pyramidal group is solvable if and only if either m=9 or k is odd. The primitive permutation groups play an important role in the proof. We also determine the orders of the m-pyramidal groups when m is a prime number.
2025
Gao, Xiaofang; Garonzi, Martino
File in questo prodotto:
File Dimensione Formato  
30_On_Pyramidal_Groups_of_Prime_Power_Degree_JPAA.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 714.29 kB
Formato Adobe PDF
714.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact