The covering number of a finite group G, denoted σ(G), is the smallest positive integer k such that G is a union of k proper subgroups. We calculate σ(G) for a family of primitive groups G with a unique minimal normal subgroup N, isomorphic to Anm with n divisible by 6 and G/N cyclic. This is a generalization of a result of Swartz concerning the symmetric groups. We also prove an asymptotic result concerning pairwise generation.
On minimal coverings and pairwise generation of some primitive groups of wreath product type
Garonzi, Martino
Ultimo
2023
Abstract
The covering number of a finite group G, denoted σ(G), is the smallest positive integer k such that G is a union of k proper subgroups. We calculate σ(G) for a family of primitive groups G with a unique minimal normal subgroup N, isomorphic to Anm with n divisible by 6 and G/N cyclic. This is a generalization of a result of Swartz concerning the symmetric groups. We also prove an asymptotic result concerning pairwise generation.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
25_On_Minimal_Coverings_and_Pairwise_Generation_JAA.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
387.23 kB
Formato
Adobe PDF
|
387.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


