The covering number of a finite group G, denoted σ(G), is the smallest positive integer k such that G is a union of k proper subgroups. We calculate σ(G) for a family of primitive groups G with a unique minimal normal subgroup N, isomorphic to Anm with n divisible by 6 and G/N cyclic. This is a generalization of a result of Swartz concerning the symmetric groups. We also prove an asymptotic result concerning pairwise generation.

On minimal coverings and pairwise generation of some primitive groups of wreath product type

Garonzi, Martino
Ultimo
2023

Abstract

The covering number of a finite group G, denoted σ(G), is the smallest positive integer k such that G is a union of k proper subgroups. We calculate σ(G) for a family of primitive groups G with a unique minimal normal subgroup N, isomorphic to Anm with n divisible by 6 and G/N cyclic. This is a generalization of a result of Swartz concerning the symmetric groups. We also prove an asymptotic result concerning pairwise generation.
2023
Almeida, Júlia; Garonzi, Martino
File in questo prodotto:
File Dimensione Formato  
25_On_Minimal_Coverings_and_Pairwise_Generation_JAA.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 387.23 kB
Formato Adobe PDF
387.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact