We prove that, in any finite nonsolvable group G, there exists a proper subgroup A such that G is a product of three conjugates of A.

Let G be a finite non-solvable group. We prove that there exists a proper subgroup A of G such that G is the product of three conjugates of A, thus replacing an earlier upper bound of 36 with the smallest possible value. The proof relies on an equivalent formulation in terms of double cosets, and uses the following theorem which is of independent interest and wider scope: Any group G with a BN-pair and a finite Weyl group W satisfies G = (Bn0)2 = BBn0B where n0 is any preimage of the longest element of W. The proof of the last theorem is formulated in the dioid consisting of all unions of double cosets of B in G. Other results on minimal length product covers of a group by conjugates of a proper subgroup are given.

Groups equal to a product of three conjugate subgroups

Garonzi M;
2016

Abstract

Let G be a finite non-solvable group. We prove that there exists a proper subgroup A of G such that G is the product of three conjugates of A, thus replacing an earlier upper bound of 36 with the smallest possible value. The proof relies on an equivalent formulation in terms of double cosets, and uses the following theorem which is of independent interest and wider scope: Any group G with a BN-pair and a finite Weyl group W satisfies G = (Bn0)2 = BBn0B where n0 is any preimage of the longest element of W. The proof of the last theorem is formulated in the dioid consisting of all unions of double cosets of B in G. Other results on minimal length product covers of a group by conjugates of a proper subgroup are given.
2016
Garonzi, M; Levy, D; Maróti, A; Simion, I
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact