We study inequalities involving the element orders of a finite group and how they influence its structure.
We prove several results detecting cyclicity or nilpotency of a finite group G in terms of inequalities involving the orders of the elements of G and the orders of the elements of the cyclic group of order |G|. We prove that, among the groups of the same order, the number of cyclic subgroups is minimal for the cyclic group, and the product of the orders of the elements is maximal for the cyclic group.
Inequalities detecting structural properties of a finite group
Garonzi M;
2017
Abstract
We prove several results detecting cyclicity or nilpotency of a finite group G in terms of inequalities involving the orders of the elements of G and the orders of the elements of the cyclic group of order |G|. We prove that, among the groups of the same order, the number of cyclic subgroups is minimal for the cyclic group, and the product of the orders of the elements is maximal for the cyclic group.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


