We study inequalities involving the element orders of a finite group and how they influence its structure.

We prove several results detecting cyclicity or nilpotency of a finite group G in terms of inequalities involving the orders of the elements of G and the orders of the elements of the cyclic group of order |G|. We prove that, among the groups of the same order, the number of cyclic subgroups is minimal for the cyclic group, and the product of the orders of the elements is maximal for the cyclic group.

Inequalities detecting structural properties of a finite group

Garonzi M;
2017

Abstract

We prove several results detecting cyclicity or nilpotency of a finite group G in terms of inequalities involving the orders of the elements of G and the orders of the elements of the cyclic group of order |G|. We prove that, among the groups of the same order, the number of cyclic subgroups is minimal for the cyclic group, and the product of the orders of the elements is maximal for the cyclic group.
2017
Garonzi, M; Patassini, M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2588274
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact