Pre-mRNA splicing is a fundamental regulatory mechanism of gene expression, enabling different protein isoforms from a single gene. This process involves intricate interactions between cis-acting elements within the pre-mRNA and trans-acting factors, and alteration of this process can lead to severe consequences, including a variety of human genetic diseases. The full impact of splicing defects often remains underestimated, and predicting their effects is challenging. Addressing splicing mis-regulation and developing correction strategies are essential for advancing therapeutic approaches. Significant progress has been made in RNA therapeutics, including engineered U1 snRNAs for modulating splicing, and in gene editing technologies that directly correct splicing mutations at the DNA level. This thesis focused on the characterization and correction of various pathogenic mutations affecting the 5’ (donor) splice sites (ss), which lead to splicing defects associated with multiple genetic disorders. Specifically, the research focused on mutations that disrupt splicing in several genes: SBDS, GNPTAB, F8, F9, and IKAP. These mutations are implicated in Shwachman-Diamond syndrome (SDS), Mucolipidosis III (MLIII), Hemophilia A (HA), Hemophilia B (HB), and Familial Dysautonomia (FD), respectively. In silico analyses predicted strength of splice sites s and identified cryptic sites contributing to aberrant splicing. In vitro experiments using minigenes transfected into HEK293T cells assessed mRNA splicing patterns before and after the therapeutic approaches tested. Patient-derived cells provided ex vivo validation for SBDS and GNPTAB mutations, while full-length splicing-competent plasmids enabled the examination of the splicing rescue at both RNA and protein levels, using ELISA and aPTT assays. Restriction fragment length polymorphism (RFLP) confirmed the efficacy of DNA-level editing in SBDS and IKAP contexts. The most interesting results include the characterization of the SDS-causing c.258+2T>C mutation in the SBDS gene, which allows the production of approximately 2% correctly spliced transcripts, explaining the survival of patients, and provides a rationale for the use of compensatory U1 snRNAs to enhance proper exon 2 definition. Moreover, the splicing defect associated with the c.258+2T>C mutation and the c.183-184TA>CT nonsense variant can be partially corrected at the DNA level using Base Editing (BE) and Prime Editing (PE). The GNPTAB c.3335+6T>G mutation was also rescued using engineered U1 snRNAs, achieving 98% exon 17 inclusion in minigene systems and 35% in patients’ fibroblasts, demonstrating the potential for partial correction in a clinically relevant setting. For HA, a single ExSpeU1 snRNA targeted multiple mutations in different F8 donor sites, proving the versatility of this approach. This study also demonstrated the effectiveness of prime editing in correcting donor site mutations in F8 and F9 genes associated with HA and HB. A single prime editing guide RNA (pegRNA), paired with a nicking guide RNA (ngRNA), partially corrected exon skipping defects caused by a range of mutations, including c.6115+1G>A, +2T>C, +3G>T, +4A>G in F8, and c.520+1G>T, +1G>A, +2T>C, -2A>C in F9 validated at RNA and protein levels. In FD, PE restored up to 84% wild-type transcripts for the c.2204+6T>C mutation in IKAP, demonstrating its precision and efficiency. Overall, this thesis highlights the critical importance of understanding the impact of splicing mutations and offers a comprehensive analysis of how these defects can be targeted for therapeutic correction. It also emphasises the need for further research into the underlying mechanisms of splicing mis-regulation, the optimisation of editing strategies for improved efficiency and specificity, laying the foundations for studies in animal models and ultimately the development of new and effective treatments for a range of genetic disorders.
Lo splicing del pre-mRNA è un meccanismo dell'espressione genica, che consente di ottenere diverse isoforme proteiche da un singolo gene. Questo processo comporta interazioni tra diverse sequenze nel pre-mRNA e fattori di splicing e la sua alterazione causa diverse malattie genetiche. Comprendere l'errata regolazione dello splicing è essenziale per sviluppare nuovi approcci terapeutici. Sono stati compiuti progressi significativi nella terapia a base di RNA, compresi gli snRNA U1 ingegnerizzati per modulare lo splicing, e nelle tecnologie di editing genetico per la correzione delle mutazioni a livello del DNA. Questa tesi si focalizza sulla caratterizzazione e sulla correzione di diverse mutazioni che interessano i siti donatori di splicing, che causano molteplici patologie. In particolare, sono stati presi in considerazione i geni SBDS, GNPTAB, F8, F9 e IKAP che sono implicati rispettivamente nella sindrome di Shwachman-Diamond (SDS), nella Mucolipidosi III (MLIII α/β), nell'Emofilia A (HA), nell'Emofilia B (HB) e nella Disautonomia Familiare (FD). Tramite analisi in silico viene predetta la forza dei siti di splicing e si identificano i possibili siti criptici che contribuiscono allo splicing aberrante. Successivamente esperimenti in vitro con minigeni trasfettati in cellule HEK293T si possono analizzare i pattern di splicing dell'mRNA prima e dopo gli approcci terapeutici testati. Infine, le cellule derivate dai pazienti forniscono un modello ex vivo per studiare le mutazioni in SBDS e GNPTAB, mentre i plasmidi esprimenti l’intera sequenza codificante permettono di esaminare la correzione del difetto di splicing del F8 e F9 sia a livello di mRNA, tramite RT-PCR che di proteine, utilizzando saggi ELISA e aPTT. Per la conferma dell’editing a livello del DNA è stata usato il metodo di analisi dei polimorfismi basato su enzimi di restrizione, dove possibile. I risultati più interessanti includono la caratterizzazione della mutazione c.258+2T>C nel gene SBDS e che consente la produzione di circa il 2% di trascritti con splicing corretto, spiegando la sopravvivenza dei pazienti, e fornisce un razionale per l'uso di snRNA U1 compensatori per migliorare la corretta definizione dell'esone 2. Inoltre, il difetto di splicing associato alla mutazione c.258+2T>C e alla variante nonsenso c.183-184TA>CT possono essere parzialmente corrette a livello del DNA utilizzando il Base Editing (BE) e il Prime Editing (PE). Il salto dell’esone dovuto alla mutazione GNPTAB c.3335+6T>G è stato corretto utilizzando gli snRNA U1 ingegnerizzati, ottenendo il 98% di inclusione dell'esone 17 in vitro e il 35% nei fibroblasti dei pazienti ex vivo, dimostrando il potenziale di questo approccio in un contesto clinicamente rilevante. Per l’emofilia A, è stato testato l’utilizzo di un unico ExSpeU1 snRNA per ripristinare l’inclusione di un esone che viene saltato in presenza di diverse mutazioni situate in un sito donatore, dimostrando la versatilità di questo approccio. Questo studio ha inoltre dimostrato l'efficacia del PE nel correggere le mutazioni del sito donatore nei geni F8 e F9 associate ad HA e HB. Un singolo pegRNA, insieme a un ngRNA ed al corretto editor, correggono parzialmente una serie di mutazioni, tra cui c.6115+1G>A, +2T>C, +3G>T, +4A>G in F8 e c.520+1G>T, +1G>A, +2T>C, -2A>C in F9. In FD, lo stesso approccio ha ripristinato fino all'84% di trascritti corretti in IKAP, dimostrando la sua precisione ed efficienza. Nel complesso, questa tesi evidenzia l'importanza di comprendere l'impatto delle mutazioni di splicing e offre un'analisi di come questi difetti possano essere mirati per la correzione terapeutica. Sottolinea la necessità di ulteriori ricerche sui meccanismi alla base dei difetti di splicing, sull’ ottimizzazione delle strategie di editing per migliorarne l'efficienza e la specificità e pone le basi per futuri studi in modelli animali per poter sviluppare nuove terapie per diverse malattie genetiche.
Addressing pathogenic splicing mutations through RNA therapeutics and DNA editing approaches
PERETTO, LAURA
2025
Abstract
Pre-mRNA splicing is a fundamental regulatory mechanism of gene expression, enabling different protein isoforms from a single gene. This process involves intricate interactions between cis-acting elements within the pre-mRNA and trans-acting factors, and alteration of this process can lead to severe consequences, including a variety of human genetic diseases. The full impact of splicing defects often remains underestimated, and predicting their effects is challenging. Addressing splicing mis-regulation and developing correction strategies are essential for advancing therapeutic approaches. Significant progress has been made in RNA therapeutics, including engineered U1 snRNAs for modulating splicing, and in gene editing technologies that directly correct splicing mutations at the DNA level. This thesis focused on the characterization and correction of various pathogenic mutations affecting the 5’ (donor) splice sites (ss), which lead to splicing defects associated with multiple genetic disorders. Specifically, the research focused on mutations that disrupt splicing in several genes: SBDS, GNPTAB, F8, F9, and IKAP. These mutations are implicated in Shwachman-Diamond syndrome (SDS), Mucolipidosis III (MLIII), Hemophilia A (HA), Hemophilia B (HB), and Familial Dysautonomia (FD), respectively. In silico analyses predicted strength of splice sites s and identified cryptic sites contributing to aberrant splicing. In vitro experiments using minigenes transfected into HEK293T cells assessed mRNA splicing patterns before and after the therapeutic approaches tested. Patient-derived cells provided ex vivo validation for SBDS and GNPTAB mutations, while full-length splicing-competent plasmids enabled the examination of the splicing rescue at both RNA and protein levels, using ELISA and aPTT assays. Restriction fragment length polymorphism (RFLP) confirmed the efficacy of DNA-level editing in SBDS and IKAP contexts. The most interesting results include the characterization of the SDS-causing c.258+2T>C mutation in the SBDS gene, which allows the production of approximately 2% correctly spliced transcripts, explaining the survival of patients, and provides a rationale for the use of compensatory U1 snRNAs to enhance proper exon 2 definition. Moreover, the splicing defect associated with the c.258+2T>C mutation and the c.183-184TA>CT nonsense variant can be partially corrected at the DNA level using Base Editing (BE) and Prime Editing (PE). The GNPTAB c.3335+6T>G mutation was also rescued using engineered U1 snRNAs, achieving 98% exon 17 inclusion in minigene systems and 35% in patients’ fibroblasts, demonstrating the potential for partial correction in a clinically relevant setting. For HA, a single ExSpeU1 snRNA targeted multiple mutations in different F8 donor sites, proving the versatility of this approach. This study also demonstrated the effectiveness of prime editing in correcting donor site mutations in F8 and F9 genes associated with HA and HB. A single prime editing guide RNA (pegRNA), paired with a nicking guide RNA (ngRNA), partially corrected exon skipping defects caused by a range of mutations, including c.6115+1G>A, +2T>C, +3G>T, +4A>G in F8, and c.520+1G>T, +1G>A, +2T>C, -2A>C in F9 validated at RNA and protein levels. In FD, PE restored up to 84% wild-type transcripts for the c.2204+6T>C mutation in IKAP, demonstrating its precision and efficiency. Overall, this thesis highlights the critical importance of understanding the impact of splicing mutations and offers a comprehensive analysis of how these defects can be targeted for therapeutic correction. It also emphasises the need for further research into the underlying mechanisms of splicing mis-regulation, the optimisation of editing strategies for improved efficiency and specificity, laying the foundations for studies in animal models and ultimately the development of new and effective treatments for a range of genetic disorders.| File | Dimensione | Formato | |
|---|---|---|---|
|
PhD Thesis-Peretto Laura .pdf
embargo fino al 19/03/2026
Descrizione: PhD Thesis-Peretto Laura
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
7.02 MB
Formato
Adobe PDF
|
7.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


