In this note we focus on possible characterizations of gauge-symmetric functions in the Heisenberg group. We discuss a family of inverse problems in potential theory relating solid and surface weighted mean-value formulas, and we show a partial solution to such problems. To this aim, we review a uniqueness result for gauge balls obtained with V. Martino in [23] by means of overdetermined problems of Serrin-type. The class of competitor sets we consider enjoys partial symmetries of toric and cylindrical type.

Symmetry problems for gauge balls in the Heisenberg Group

Tralli G.
Primo
2024

Abstract

In this note we focus on possible characterizations of gauge-symmetric functions in the Heisenberg group. We discuss a family of inverse problems in potential theory relating solid and surface weighted mean-value formulas, and we show a partial solution to such problems. To this aim, we review a uniqueness result for gauge balls obtained with V. Martino in [23] by means of overdetermined problems of Serrin-type. The class of competitor sets we consider enjoys partial symmetries of toric and cylindrical type.
2024
Tralli, G.
File in questo prodotto:
File Dimensione Formato  
BPMAS_final.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 338.31 kB
Formato Adobe PDF
338.31 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2585291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact