For the 2D Oberbeck-Boussinesq system in an annulus, we are looking for the critical Rayleigh number for which the (non-zero) basic flow loses stability. For this, we consider the corresponding Euler-Lagrange equations and construct a precise functional analytical frame for the Laplace and the Stokes problem as well as the Bilaplacian operator in this domain. With this frame and the right set of basis functions, it is then possible to construct and apply a numerical scheme providing the critical Raleigh number.

Natural convection in the horizontal annulus: Critical Rayleigh number for the steady problem

Passerini, A.
Primo
;
2025

Abstract

For the 2D Oberbeck-Boussinesq system in an annulus, we are looking for the critical Rayleigh number for which the (non-zero) basic flow loses stability. For this, we consider the corresponding Euler-Lagrange equations and construct a precise functional analytical frame for the Laplace and the Stokes problem as well as the Bilaplacian operator in this domain. With this frame and the right set of basis functions, it is then possible to construct and apply a numerical scheme providing the critical Raleigh number.
2025
Passerini, A.; Rummler, B.; Růžička, M.; Thäter, G.
File in questo prodotto:
File Dimensione Formato  
Z Angew Math Mech - 2025 - Passerini - Natural convection.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 438.74 kB
Formato Adobe PDF
438.74 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2585191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact