Zeolites are amongst the most extensively explored crystalline microporous materials because of their variable chemical composition, framework geometry, pore dimensions, and tunability. Due to their high surface area, adsorption selectivity, mechanical, biological, chemical, and thermal sta-bility, these molecular sieves are widely used in adsorption, catalysis, ion exchange, and separation technologies. This short review highlights the notable progress achieved in leveraging the properties of zeolite materials for multiple applications, including gas separation and storage, adsorption, catalysis, chemical sensing, and biomedical applications. The aim is to emphasize their capabilities by showcasing important achievements that have driven research in this field toward new and unforeseen areas of material chemistry.
Exploring the Potential of Zeolites for Sustainable Environmental Applications.
Annalisa Martucci
Supervision
;Maura MancinelliPrimo
Conceptualization
2025
Abstract
Zeolites are amongst the most extensively explored crystalline microporous materials because of their variable chemical composition, framework geometry, pore dimensions, and tunability. Due to their high surface area, adsorption selectivity, mechanical, biological, chemical, and thermal sta-bility, these molecular sieves are widely used in adsorption, catalysis, ion exchange, and separation technologies. This short review highlights the notable progress achieved in leveraging the properties of zeolite materials for multiple applications, including gas separation and storage, adsorption, catalysis, chemical sensing, and biomedical applications. The aim is to emphasize their capabilities by showcasing important achievements that have driven research in this field toward new and unforeseen areas of material chemistry.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.