A novel hyperbolic system of partial differential equations is introduced to model traffic flows. This system comprises three equations, with two being linearly degenerate; its main feature is the inclusion of a hysteretic term in a generalized Aw-Rascle-Zhang (ARZ) model. First, a maximum principle for the diffusive version of the model is proven. Then, it is demonstrated that a solution to the Riemann problem exists, which is unique among solutions that are monotone in velocity; all waves exploited in the construction have suitable viscous profiles. Through several examples it is shown how, as a consequence of different driving habits, the system can model the decay, emergence, or persistence of stop-and-go waves (a feature that is missing in the ARZ model), and such behavior is characterized by a simple geometric condition. Furthermore, the model allows the study of traffic flows with a mixture of drivers whose hysteresis loops are either clockwise or counterclockwise. In particular, the presence of sufficiently many of the former dampens speed oscillations.

The hysteretic Aw–Rascle–Zhang model

Corli A.
Primo
;
Fan H.
Ultimo
2024

Abstract

A novel hyperbolic system of partial differential equations is introduced to model traffic flows. This system comprises three equations, with two being linearly degenerate; its main feature is the inclusion of a hysteretic term in a generalized Aw-Rascle-Zhang (ARZ) model. First, a maximum principle for the diffusive version of the model is proven. Then, it is demonstrated that a solution to the Riemann problem exists, which is unique among solutions that are monotone in velocity; all waves exploited in the construction have suitable viscous profiles. Through several examples it is shown how, as a consequence of different driving habits, the system can model the decay, emergence, or persistence of stop-and-go waves (a feature that is missing in the ARZ model), and such behavior is characterized by a simple geometric condition. Furthermore, the model allows the study of traffic flows with a mixture of drivers whose hysteresis loops are either clockwise or counterclockwise. In particular, the presence of sufficiently many of the former dampens speed oscillations.
2024
Corli, A.; Fan, H.
File in questo prodotto:
File Dimensione Formato  
2024_Corli-Fan-SAM.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2571816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact