In the present paper we deal with stochastic semilinear partial differential equations Lu=γ(u)+σ(u)Ξ˙ of parabolic type with (t, x)-depending coefficients which may admit a polynomial growth with respect to the space variable. Under suitable assumptions on the coefficients of the parabolic operator L, on the initial data and on the stochastic noise Ξ (more precisely, on the spectral measure M associated with Ξ) we prove existence of a unique (mild) function-valued solution for the associated Cauchy problem.

Solution Theory to Semilinear Parabolic Stochastic Partial Differential Equations with Polynomially Bounded Coefficients

Alessia Ascanelli
Primo
;
Sandro Coriasco;
2025

Abstract

In the present paper we deal with stochastic semilinear partial differential equations Lu=γ(u)+σ(u)Ξ˙ of parabolic type with (t, x)-depending coefficients which may admit a polynomial growth with respect to the space variable. Under suitable assumptions on the coefficients of the parabolic operator L, on the initial data and on the stochastic noise Ξ (more precisely, on the spectral measure M associated with Ξ) we prove existence of a unique (mild) function-valued solution for the associated Cauchy problem.
2025
Ascanelli, Alessia; Coriasco, Sandro; Süß, André
File in questo prodotto:
File Dimensione Formato  
s11868-024-00665-4.pdf

solo gestori archivio

Descrizione: file così come pubblicato
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 388.63 kB
Formato Adobe PDF
388.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2571150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact