Flexible magnetic materials have great potential for biomedical and soft robotics applications, but they need to be mechanically robust. An extraordinary material from a mechanical point of view is spider silk. Recently, methods for producing artificial spider silk fibers in a scalable and all-aqueous-based process have been developed. If endowed with magnetic properties, such biomimetic artificial spider silk fibers would be excellent candidates for making magnetic actuators. In this study, we introduce magnetic artificial spider silk fibers, comprising magnetite nanoparticles coated with meso-2,3-dimercaptosuccinic acid. The composite fibers can be produced in large quantities, employing an environmentally friendly wet-spinning process. The nanoparticles were found to be uniformly dispersed in the protein matrix even at high concentrations (up to 20% w/w magnetite), and the fibers were superparamagnetic at room temperature. This enabled external magnetic field control of fiber movement, rendering the material suitable for actuation applications. Notably, the fibers exhibited superior mechanical properties and actuation stresses compared to conventional fiber-based magnetic actuators. Moreover, the fibers developed herein could be used to create macroscopic systems with self-recovery shapes, underscoring their potential in soft robotics applications.

High-performance magnetic artificial silk fibers produced by a scalable and eco-friendly production method

Del Bianco, Lucia;Spizzo, Federico;
2024

Abstract

Flexible magnetic materials have great potential for biomedical and soft robotics applications, but they need to be mechanically robust. An extraordinary material from a mechanical point of view is spider silk. Recently, methods for producing artificial spider silk fibers in a scalable and all-aqueous-based process have been developed. If endowed with magnetic properties, such biomimetic artificial spider silk fibers would be excellent candidates for making magnetic actuators. In this study, we introduce magnetic artificial spider silk fibers, comprising magnetite nanoparticles coated with meso-2,3-dimercaptosuccinic acid. The composite fibers can be produced in large quantities, employing an environmentally friendly wet-spinning process. The nanoparticles were found to be uniformly dispersed in the protein matrix even at high concentrations (up to 20% w/w magnetite), and the fibers were superparamagnetic at room temperature. This enabled external magnetic field control of fiber movement, rendering the material suitable for actuation applications. Notably, the fibers exhibited superior mechanical properties and actuation stresses compared to conventional fiber-based magnetic actuators. Moreover, the fibers developed herein could be used to create macroscopic systems with self-recovery shapes, underscoring their potential in soft robotics applications.
2024
Greco, Gabriele; Schmuck, Benjamin; Del Bianco, Lucia; Spizzo, Federico; Fambri, Luca; Pugno, Nicola Maria; Veintemillas-Verdaguer, Sabino; Morales, M...espandi
File in questo prodotto:
File Dimensione Formato  
s42114-024-00962-y.pdf

solo gestori archivio

Descrizione: Copia dell'articolo pubblicato sul sito della rivista
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
s42114-024-00962-y.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2567430
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact