In sub-Riemannian geometry there exist, in general, no known explicit representations of the heat kernels, and these functions fail to have any symmetry whatsoever. In particular, they are not a function of the control distance, nor they are for instance spherically symmetric in any of the layers of the Lie algebra. Despite these unfavourable aspects, in this paper we establish a new heat semigroup characterisation of the Sobolev and spaces in a Carnot group by means of an integral decoupling property of the heat kernel.
A Universal Heat Semigroup Characterisation of Sobolev and BV Spaces in Carnot Groups
Tralli, GiulioUltimo
2024
Abstract
In sub-Riemannian geometry there exist, in general, no known explicit representations of the heat kernels, and these functions fail to have any symmetry whatsoever. In particular, they are not a function of the control distance, nor they are for instance spherically symmetric in any of the layers of the Lie algebra. Despite these unfavourable aspects, in this paper we establish a new heat semigroup characterisation of the Sobolev and spaces in a Carnot group by means of an integral decoupling property of the heat kernel.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rnad264.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
855.14 kB
Formato
Adobe PDF
|
855.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2205.04574v2.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
386.19 kB
Formato
Adobe PDF
|
386.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.