Distributed filtering is crucial in many applications such as localization, radar, autonomy, and environmental monitoring. The aim of distributed filtering is to infer time-varying unknown states using data obtained via sensing and communication in a network. This paper analyzes continuous-time distributed filtering with sensing and communication constraints. In particular, the paper considers a building-block system of two nodes, where each node is tasked with inferring a time-varying unknown state. At each time, the two nodes obtain noisy observations of the unknown states via sensing and perform communication via a Gaussian feedback channel. The distributed filter of the unknown state is computed based on both the sensor observations and the received messages. We analyze the asymptotic performance of the distributed filter by deriving a necessary and sufficient condition of the sensing and communication capabilities under which the mean-square error of the distributed filter is bounded over time. Numerical results are presented to validate the derived necessary and sufficient condition.

Continuous-Time Distributed Filtering With Sensing and Communication Constraints

Conti, Andrea;
2023

Abstract

Distributed filtering is crucial in many applications such as localization, radar, autonomy, and environmental monitoring. The aim of distributed filtering is to infer time-varying unknown states using data obtained via sensing and communication in a network. This paper analyzes continuous-time distributed filtering with sensing and communication constraints. In particular, the paper considers a building-block system of two nodes, where each node is tasked with inferring a time-varying unknown state. At each time, the two nodes obtain noisy observations of the unknown states via sensing and perform communication via a Gaussian feedback channel. The distributed filter of the unknown state is computed based on both the sensor observations and the received messages. We analyze the asymptotic performance of the distributed filter by deriving a necessary and sufficient condition of the sensing and communication capabilities under which the mean-square error of the distributed filter is bounded over time. Numerical results are presented to validate the derived necessary and sufficient condition.
2023
Liu, Zhenyu; Conti, Andrea; Mitter, Sanjoy K.; Win, Moe Z.
File in questo prodotto:
File Dimensione Formato  
LiuConMitWin-JSAIT-12-2023—Continuous-Time Distributed Filtering With Sensing and Communication Constraints.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2546170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact