Multiple frames are becoming increasingly relevant due to the spread of surveys conducted via registers. In this regard, estimators of population quantities have been proposed, including the multiplicity estimator. In all cases, variance estimation still remains a matter of debate. This paper explores the potential of Bayesian bootstrap techniques for computing such estimators. The suitability of the method, which is compared to the existing frequentist bootstrap, is shown by conducting a small-scale simulation study and a case study.

Bayesian Bootstrap in Multiple Frames

Ievoli, Riccardo
Ultimo
2022

Abstract

Multiple frames are becoming increasingly relevant due to the spread of surveys conducted via registers. In this regard, estimators of population quantities have been proposed, including the multiplicity estimator. In all cases, variance estimation still remains a matter of debate. This paper explores the potential of Bayesian bootstrap techniques for computing such estimators. The suitability of the method, which is compared to the existing frequentist bootstrap, is shown by conducting a small-scale simulation study and a case study.
2022
Cocchi, Daniela; Marchi, Lorenzo; Ievoli, Riccardo
File in questo prodotto:
File Dimensione Formato  
stats-05-00034-v2.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 291.68 kB
Formato Adobe PDF
291.68 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2539891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact