: The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.

Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage

Esposito, Elisabetta
Primo
;
Ferrara, Francesca;Bortolini, Olga;Ragno, Daniele;Toldo, Sofia;Bondi, Agnese;Pecorelli, Alessandra;Voltan, Rebecca;Secchiero, Paola;Zauli, Giorgio;Valacchi, Giuseppe
Ultimo
2024

Abstract

: The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.
2024
Esposito, Elisabetta; Ferrara, Francesca; Drechsler, Markus; Bortolini, Olga; Ragno, Daniele; Toldo, Sofia; Bondi, Agnese; Pecorelli, Alessandra; Volt...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2536397
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact