Multiple myeloma (MM) is a heterogeneous neoplasm accounting for the second most prevalent hematologic disorder. The identification of noninvasive, valuable biomarkers is of utmost importance for the best patient treatment selection, especially in heterogeneous diseases like MM. Despite molecular imaging with positron emission tomography (PET) has achieved a primary role in the characterization of MM, it is not free from shortcomings. In recent years, radiomics and artificial intelligence (AI), which includes machine learning (ML) and deep learning (DL) algorithms, have played an important role in mining additional information from medical images beyond human eyes' resolving power. Our review provides a summary of the current status of radiomics and AI in different clinical contexts of MM. A systematic search of PubMed, Web of Science, and Scopus was conducted, including all the articles published in English that explored radiomics and AI analyses of PET/CT images in MM. The initial results have highlighted the potential role of such new features in order to improve the clinical stratification of MM patients, as well as to increase their clinical benefits. However, more studies are warranted before these approaches can be implemented in clinical routines.

Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art

Manco L.;Urso L.;
2023

Abstract

Multiple myeloma (MM) is a heterogeneous neoplasm accounting for the second most prevalent hematologic disorder. The identification of noninvasive, valuable biomarkers is of utmost importance for the best patient treatment selection, especially in heterogeneous diseases like MM. Despite molecular imaging with positron emission tomography (PET) has achieved a primary role in the characterization of MM, it is not free from shortcomings. In recent years, radiomics and artificial intelligence (AI), which includes machine learning (ML) and deep learning (DL) algorithms, have played an important role in mining additional information from medical images beyond human eyes' resolving power. Our review provides a summary of the current status of radiomics and AI in different clinical contexts of MM. A systematic search of PubMed, Web of Science, and Scopus was conducted, including all the articles published in English that explored radiomics and AI analyses of PET/CT images in MM. The initial results have highlighted the potential role of such new features in order to improve the clinical stratification of MM patients, as well as to increase their clinical benefits. However, more studies are warranted before these approaches can be implemented in clinical routines.
2023
Manco, L.; Albano, D.; Urso, L.; Arnaboldi, M.; Castellani, M.; Florimonte, L.; Guidi, G.; Turra, A.; Castello, A.; Panareo, S.
File in questo prodotto:
File Dimensione Formato  
jcm-12-07669.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 613.89 kB
Formato Adobe PDF
613.89 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2535570
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact