In this paper we prove a higher differentiability result for the solutions to a class of obstacle problems in the form \begin{equation*} \label{obst-def0} \min\left\{\int_\Omega F(x,Dw) dx : w\in \mathcal{K}_{\psi}(\Omega)\right\} \end{equation*} where $\psi\in W^{1,p(x)}(\Omega)$ is a fixed function called obstacle and $\mathcal{K}_{\psi}(\Omega)=\{w \in W^{1,p(x)}_{0}(\Omega)+u_0: w \ge \psi \,\, \textnormal{a.e. in $\Omega$}\}$ is the class of the admissible functions, for a suitable boundary value $ u_0 $. We deal with a convex integrand $F$ which satisfies the $p(x)$-growth conditions \begin{equation*}\label{growth}|\xi|^{p(x)}\le F(x,\xi)\le C(1+|\xi|^{p(x)}),\quad p(x)>1 \end{equation*}

Higher differentiability of solutions for a class of obstacle problems with variable exponents

GILIBERTI G
2022

Abstract

In this paper we prove a higher differentiability result for the solutions to a class of obstacle problems in the form \begin{equation*} \label{obst-def0} \min\left\{\int_\Omega F(x,Dw) dx : w\in \mathcal{K}_{\psi}(\Omega)\right\} \end{equation*} where $\psi\in W^{1,p(x)}(\Omega)$ is a fixed function called obstacle and $\mathcal{K}_{\psi}(\Omega)=\{w \in W^{1,p(x)}_{0}(\Omega)+u_0: w \ge \psi \,\, \textnormal{a.e. in $\Omega$}\}$ is the class of the admissible functions, for a suitable boundary value $ u_0 $. We deal with a convex integrand $F$ which satisfies the $p(x)$-growth conditions \begin{equation*}\label{growth}|\xi|^{p(x)}\le F(x,\xi)\le C(1+|\xi|^{p(x)}),\quad p(x)>1 \end{equation*}
2022
Foralli, N; Giliberti, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2532790
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact