We investigated the basis for better performance of transgenic Nicotiana tabacum plants with G6PDH-isoenzyme replacement in the cytosol (Xanthi::cP2::cytRNAi, Scharte et al., 2009). After six generations of selfing, infiltration of Phytophthora nicotianae zoospores into source leaves confirmed that defence responses (ROS, callose) are accelerated, showing as fast cell death of the infected tissue. Yet, stress-related hormone profiles resembled susceptible Xanthi and not resistant cultivar SNN, hinting at mainly metabolic adjustments in the transgenic lines. Leaves of non-stressed plants contained twofold elevated fructose-2,6-bisphosphate (F2,6P2) levels, leading to partial sugar retention (soluble sugars, starch) and elevated hexose-to-sucrose ratios, but also more lipids. Above-ground biomass lay in between susceptible Xanthi and resistant SNN, with photo-assimilates preferentially allocated to inflorescences. Seeds were heavier with higher lipid-to-carbohydrate ratios, resulting in increased harvest yields - also under water limitation. Abiotic stress tolerance (salt, drought) was improved during germination, and in floated leaf disks of non-stressed plants. In leaves of salt-watered plants, proline accumulated to higher levels during illumination, concomitant with efficient NADP(H) use and recycling. Non-stressed plants showed enhanced PSII-induction kinetics (upon dark–light transition) with little differences at the stationary phase. Leaf exudates contained 10% less sucrose, similar amino acids, but more fatty acids – especially in the light. Export of specific fatty acids via the phloem may contribute to both, earlier flowering and higher seed yields of the Xanthi-cP2 lines. Apparently, metabolic priming by F2,6P2—combined with sustained NADP(H) turnover—bypasses the genetically fixed growth–defence trade-off, rendering tobacco plants more stress-resilient and productive.

Metabolic priming in G6PDH isoenzyme-replaced tobacco lines improves stress tolerance and seed yields via altering assimilate partitioning

Forlani G.;
2023

Abstract

We investigated the basis for better performance of transgenic Nicotiana tabacum plants with G6PDH-isoenzyme replacement in the cytosol (Xanthi::cP2::cytRNAi, Scharte et al., 2009). After six generations of selfing, infiltration of Phytophthora nicotianae zoospores into source leaves confirmed that defence responses (ROS, callose) are accelerated, showing as fast cell death of the infected tissue. Yet, stress-related hormone profiles resembled susceptible Xanthi and not resistant cultivar SNN, hinting at mainly metabolic adjustments in the transgenic lines. Leaves of non-stressed plants contained twofold elevated fructose-2,6-bisphosphate (F2,6P2) levels, leading to partial sugar retention (soluble sugars, starch) and elevated hexose-to-sucrose ratios, but also more lipids. Above-ground biomass lay in between susceptible Xanthi and resistant SNN, with photo-assimilates preferentially allocated to inflorescences. Seeds were heavier with higher lipid-to-carbohydrate ratios, resulting in increased harvest yields - also under water limitation. Abiotic stress tolerance (salt, drought) was improved during germination, and in floated leaf disks of non-stressed plants. In leaves of salt-watered plants, proline accumulated to higher levels during illumination, concomitant with efficient NADP(H) use and recycling. Non-stressed plants showed enhanced PSII-induction kinetics (upon dark–light transition) with little differences at the stationary phase. Leaf exudates contained 10% less sucrose, similar amino acids, but more fatty acids – especially in the light. Export of specific fatty acids via the phloem may contribute to both, earlier flowering and higher seed yields of the Xanthi-cP2 lines. Apparently, metabolic priming by F2,6P2—combined with sustained NADP(H) turnover—bypasses the genetically fixed growth–defence trade-off, rendering tobacco plants more stress-resilient and productive.
2023
Scharte, J.; Hassa, S.; Herrfurth, C.; Feussner, I.; Forlani, G.; Weis, E.; von Schaewen, A.
File in questo prodotto:
File Dimensione Formato  
2023 Plant J.pdf

accesso aperto

Descrizione: versione editoriale open access
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 8.2 MB
Formato Adobe PDF
8.2 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2531050
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact