Water distribution networks (WDNs) are complex combinations of nodes and links, and the current tendency is to modify their topological structure through the closure of isolation valves for monitoring and water quality reasons. For their analysis, several approaches based on graph theory have recently been proposed, mainly considering steady-state flow conditions. However, in their real functioning, WDNs are continuously subjected to pressure transients generated by manoeuvres on regulation devices or by users’ activity. This study investigates the application of some metrics from graph theory, already used in the context of steady-state analysis, for assessing the effects of changes in the topological structure of a network ‒ due for example to sectorization or branching operations ‒ on its transient response when subjected to manoeuvres on devices such as hydrants, pumps, etc. or users’ activity. The analysis shows that some connectivity metrics can effectively reflect the dynamic pressure behaviour of the network and, thus, provides useful indications for design and management operations taking into account unsteady flow features.
Extending the Application of Connectivity Metrics for Characterizing the Dynamic Behavior of Water Distribution Networks
Marsili V.
Primo
;Alvisi S.Secondo
;Franchini M.Ultimo
2023
Abstract
Water distribution networks (WDNs) are complex combinations of nodes and links, and the current tendency is to modify their topological structure through the closure of isolation valves for monitoring and water quality reasons. For their analysis, several approaches based on graph theory have recently been proposed, mainly considering steady-state flow conditions. However, in their real functioning, WDNs are continuously subjected to pressure transients generated by manoeuvres on regulation devices or by users’ activity. This study investigates the application of some metrics from graph theory, already used in the context of steady-state analysis, for assessing the effects of changes in the topological structure of a network ‒ due for example to sectorization or branching operations ‒ on its transient response when subjected to manoeuvres on devices such as hydrants, pumps, etc. or users’ activity. The analysis shows that some connectivity metrics can effectively reflect the dynamic pressure behaviour of the network and, thus, provides useful indications for design and management operations taking into account unsteady flow features.File | Dimensione | Formato | |
---|---|---|---|
2023_WRR_Marsili.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.